Paenibacillus cucumis sp. nov., isolated from a cucumber plant

Peter Kämper,1 Hans-Jürgen Busse,2 Joseph W. Kloeppper,3 Chia-Hui Hu,3 John A. McInroy3 and Stefanie P. Glaeser1

1Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
2Institut für Mikrobiologie, Veterinärmedizinische Universität, A-1210 Wien, Austria
3Department of Entomology and Plant Pathology, Auburn University, Alabama, USA

A Gram-positive-staining, aerobic, endospore-forming bacterial strain, isolated from the stem of a cucumber plant, was studied in detail for its taxonomic position. Based on 16S rRNA gene sequence similarity comparisons, strain AP-1151 was grouped into the genus Paenibacillus, most closely related to Paenibacillus amylyticus (98.8 %), Paenibacillus tundracea and Paenibacillus barcinonensis (both 98.4 %). The 16S rRNA gene sequence similarity to other species of the genus Paenibacillus was < 98.4 %. Chemotaxonomic characterization supported allocation of the strain to the genus Paenibacillus. The quinone system contained exclusively menaquinone MK-7, and in the polar lipid profile diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylserine were predominating. The major component in the polypeptide pattern was spermidine, and the diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid. The major fatty acids were iso- and anteiso-branched fatty acids. The results of physiological and biochemical tests allowed phenotypic differentiation of strain AP-1151 from closely related species. Thus, AP-1151 represents a novel species of the genus Paenibacillus, for which the name Paenibacillus cucumis sp. nov. is proposed, with AP-1151 (=LMG 29222T=CCM 8653T) as the type strain.

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain AP-1151 is KU201962.
and sulphide production was tested in SIM agar according to the instructions of the manufacturer (Merck).

For phylogenetic analysis, the 16S rRNA gene of strain AP-115\(^T\) was PCR-amplified and sequenced with universal 16S rRNA gene sequence targeting primers 27F and 1492R (Lane, 1991). The final, corrected 16S rRNA gene sequence of strain AP-115\(^T\) had a size of 1480 nt and spanned gene termini 8 to 1474 (numbering according to Brosius et al., 1978). Phylogenetic identification was performed with EzTaxon (Kim et al., 2012) by BLAST analysis in the EzTaxon type strain 16S rRNA gene sequence database. Strain AP-115\(^T\) shared highest 16S rRNA gene sequence similarity with the type strains of Paenibacillus amylolyticus (98.8%), Paenibacillus tundrae and Paenibacillus barcinonensis (both 98.4%). Sequence similarities to all other species of the genus Paenibacillus were below 98.4%. The phylogenetic relationship of strain AP-115\(^T\) was analysed in more detail in ARB release 5.2 (Ludwig et al., 2004) using the ‘All-Species Living Tree’ Project (LTP; Yarza et al., 2008) database release LTPs123 (September 2015). SINA (v1.2.9) was used to align sequences not included in the LTP database according to the SILVA seed alignment (http://www.arb-silva.de; Pruesse et al., 2007) before the sequences were implemented in the LTP database. Maximum-likelihood trees were calculated with RAxML v7.04 (Stamatakis, 2006), GTR-GAMMA and rapid bootstrap analysis, neighbour-joining trees with the Jukes-Cantor correction (Jukes & Cantor, 1969), and maximum parsimony trees with DNAPARS v 3.6 (Felsenstein, 2005). All trees were calculated with 100 resamplings (bootstrap analysis; Felsenstein, 1985) and 16S rRNA gene sequences between gene termini 86 and 1402 (Escherichia coli numbering; Brosius et al., 1978). First, trees were calculated including all species of the genus Paenibacillus. Further trees were then calculated, including only type strains which

![Fig. 1. Maximum-likelihood tree showing the phylogenetic position of strain AP-115\(^T\) among closely related species of the genus Paenibacillus. The tree was generated in ARB using RAxML (GTR-GAMMA, RAP bootstrap analysis) and based on 16S rRNA gene sequence data between positions 86 and 1427 according to E. coli numbering (Brosius et al., 1978), GenBank/EMBL/DDJB accession numbers are given in parentheses. Numbers at branch nodes refer to bootstrap values >70% (100 replicates). Filled circles mark nodes that were also present in respective maximum-parsimony and neighbour-joining trees. Larger circles indicate nodes that were also supported by high bootstrap values in the other trees. Saccharibacillus kuerlensis and Saccharibacillus sacchari were used as outgroups. Bar, 0.10 substitutions per site.](image-url)
The genomic DNA G+C content of AP-115T was supported by high bootstrap values. The genomic DNA G+C content determined for strain AP-115T was 51.4 mol%.

DNA–DNA hybridization was applied according to the method of Ziemke et al. (1998) using genomic DNA extracted by the method of Pitcher et al. (1989). Hybridization of genomic DNA of strain AP-115T and \emph{P. amylolyticus} LMG 11153T, \emph{P. tundræ} DSM 21291T and \emph{P. barcinonensis} DSM 15478T resulted in values of 27\% (reciprocal 17\%), 58\% (reciprocal 56\%) and 41\% (reciprocal 58\%), respectively.

Biomass subjected to analyses of the diagnostic diamino acid of the peptidoglycan, polyamines, the quinone system and polar lipids was grown in PYE broth (0.3\% peptone from casein, 0.3\% yeast extract, pH 7.2) at 28°C. Quinones and polar lipids were extracted and analysed by applying the integrated procedure reported by Tindall (1990a, b) and Altenburger et al. (1996). Polyamines were extracted and analysed from cells harvested at the late exponential growth phase as reported by Busse & Auling (1988) and Altenburger et al. (1997). HPLC analysis was carried out using the equipment described by Stolz et al. (2007). The diagnostic diamino acid of the peptidoglycan was analysed according to the method of Schumann (2011).

The fatty acids were extracted and analysed as described by Kämpfer & Kroppenstedt (1996). Strains were grown under identical conditions (TSA after 72 h of incubation at 28°C), and the cells for extractions were taken from colonies of the same size. Fatty acids were identified with Sherlock version 2.11, TSBA40 Rev. 4.1 (MIDI).

The quinone system consisted exclusively of MK-7, which supported the affiliation of strain AP-115T to the genus \emph{Paenibacillus}. The polar lipid profile of strain AP-115T contained the major lipids diphostatidyglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylserine and trace amounts of two lipids only detectable after total lipid staining (Fig. 2). The polyamine pattern contained only the major compound spermidine [15.2 \(\mu\)mol (g dry weight)]-1] and traces of putrescine, cadaverine and spermine [each \(<0.1 \mu\)mol (g dry weight)]-1]. \emph{meso-Diaminopimelic acid} was identified as the diagnostic diamino acid of the peptidoglycan.

The fatty acids comprised mainly iso- and anteiso-branched fatty acids and were very similar to those of the most closely related species of the genus \emph{Paenibacillus}. The detailed fatty acid profile obtained is shown in Table 1.

The results of the physiological characterization, performed using methods described previously (Kämpfer, 1990; Altenburger et al., 2013), resulted in values of 27\% (reciprocal 17\%), 58\% (reciprocal 56\%) and 41\% (reciprocal 58\%), respectively.

Biomass subjected to analyses of the diagnostic diamino acid of the peptidoglycan, polyamines, the quinone system and polar lipids was grown in PYE broth (0.3\% peptone from casein, 0.3\% yeast extract, pH 7.2) at 28°C. Quinones and polar lipids were extracted and analysed by applying the integrated procedure reported by Tindall (1990a, b) and Altenburger et al. (1996). Polyamines were extracted and analysed from cells harvested at the late exponential growth phase as reported by Busse & Auling (1988) and Altenburger et al. (1997). HPLC analysis was carried out using the equipment described by Stolz et al. (2007). The diagnostic diamino acid of the peptidoglycan was analysed according to the method of Schumann (2011).

The fatty acids were extracted and analysed as described by Kämpfer & Kroppenstedt (1996). Strains were grown under identical conditions (TSA after 72 h of incubation at 28°C), and the cells for extractions were taken from colonies of the same size. Fatty acids were identified with Sherlock version 2.11, TSBA40 Rev. 4.1 (MIDI).

The quinone system consisted exclusively of MK-7, which supported the affiliation of strain AP-115T to the genus \emph{Paenibacillus}. The polar lipid profile of strain AP-115T contained the major lipids diphostatidyglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylserine and trace amounts of two lipids only detectable after total lipid staining (Fig. 2). The polyamine pattern contained only the major compound spermidine [15.2 \(\mu\)mol (g dry weight)]-1] and traces of putrescine, cadaverine and spermine [each \(<0.1 \mu\)mol (g dry weight)]-1]. \emph{meso-Diaminopimelic acid} was identified as the diagnostic diamino acid of the peptidoglycan.

The fatty acids comprised mainly iso- and anteiso-branched fatty acids and were very similar to those of the most closely related species of the genus \emph{Paenibacillus}. The detailed fatty acid profile obtained is shown in Table 1.

The results of the physiological characterization, performed using methods described previously (Kämpfer, 1990; Altenburger et al., 2013), resulted in values of 27\% (reciprocal 17\%), 58\% (reciprocal 56\%) and 41\% (reciprocal 58\%), respectively.

Table 1. Cellular fatty acid profiles of strain AP-115T and the most closely related species of the genus \emph{Paenibacillus}\n
<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(_{14}:0)</td>
<td>5.3</td>
<td>2.9</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>C(_{15}:0)</td>
<td></td>
<td></td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>C(_{16}:0)</td>
<td>10.5</td>
<td>9.5</td>
<td>2.5</td>
<td>5.0</td>
</tr>
<tr>
<td>Branched</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iso-C(_{14}:0)</td>
<td>7.2</td>
<td>2.0</td>
<td>7.1</td>
<td>16.3</td>
</tr>
<tr>
<td>iso-C(_{15}:0)</td>
<td>5.4</td>
<td>10.2</td>
<td>4.9</td>
<td>6.4</td>
</tr>
<tr>
<td>anteiso-C(_{15}:0)</td>
<td>43.8</td>
<td>51.5</td>
<td>62.3</td>
<td>38.6</td>
</tr>
<tr>
<td>iso-C(_{16}:0)</td>
<td>12.1</td>
<td>9.9</td>
<td>11.1</td>
<td>16.5</td>
</tr>
<tr>
<td>iso-C(_{17}:0)</td>
<td>3.5</td>
<td>9.5</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>anteiso-C(_{17}:0)</td>
<td>3.5</td>
<td>3.5</td>
<td>2.5</td>
<td>7.9</td>
</tr>
</tbody>
</table>

http://ijs.microbiologyresearch.org

Downloaded from www.microbiologyresearch.org by IP: 54.70.40.11 On: Fri, 08 Feb 2019 21:12:17

Kämpfer et al., 1991, are given in Table 2 and in the species description.

Based on the summary of genotypic, phenotypic and chemotaxonomic results, we describe a novel species of the genus \textit{Paenibacillus}, for which the name \textit{Paenibacillus cucumis} is proposed. The minimal standards, as provided by Logan et al. (2009), were considered.

\textbf{Description of \textit{Paenibacillus cucumis} \textit{sp. nov.}}

\textit{Paenibacillus cucumis} (cu.cu’mis. L. gen. n. cucumis of cucumber).

Cells (with rounded ends) stain Gram-positive. No chains or filaments can be observed after growth on TSA at 28°C for 48 h. Cells are 2.0–3.0 \textmu m in length and 0.8–1.0 \textmu m in width) and show no motility. Oval endospores are formed in a central position. No other cell inclusions can be detected. Colonies grown on TSA after 48 h of incubation are circular, convex and beige with a shiny appearance and an average diameter of 2 to 3 mm. Weak growth on MacConkey agar. Optimum temperature for growth is 28–30°C; growth occurs between 10 and 45°C but not at 4°C or 50°C. Optimal pH for growth is pH 7–8; growth occurs between pH 5.5 and 9.5. Grows in the presence of 1–5% NaCl (but not 6% or above) tested in TS broth. Tests for catalase and oxidase activities are positive. Tests for production of indole and sulphide, gelatinase, \textit{β}-galactosidase, arginine dihydrolase, lysine decarboxylase, ornithine decarboxylase and tryptophan deaminase, citrate utilization, and gelatin, starch and casein hydrolysis are negative. No acid formation from the sugars or sugar-related compounds D-glucose, lactose, sucrose, D-mannitol, dulcitol, salicin, D-adonitol, D-sorbitol, L-arabinose, raffinose, L-rhamnose, maltose, D-xylene, trehalose, cellobiose, erythritol, melibiose, D-arabitol and D-mannose. Urease production is weakly positive. Several sugars or sugar-related compounds are utilized as sole sources of carbon according to the method of Kämpfer et al. (1991): \textit{N}-acetyl-D-glucosamine, L-arabinose, arbutin, cellobiose, D-fructose, D-glucose, D-galactose, gluconate, maltose, L-rhamnose, sucrose, salicin, trehalose, D-xylene, \textit{myo}-inositol, D-maltitol, D-mannitol, D-mannose, D-sorbitol, malate and pyruvate. D-Adonitol, melibiose, ribose, putrescine, acetaldehyde, propionate, \textit{cis}-aconitate, \textit{trans}-aconitate, adipate, 4-aminobutyrate, azelate, citrate, itaconate, 2-oxoglutarate and mesaconate are not utilized as sole carbon sources. Hydrolysis of \textit{para-nitrophenyl-β-D-glucuronide} and \textit{L-alanine-para-nitroanilide} is positive. The predominant polyamine is spermidine. The quinone system contains mainly menaquinone MK-7. The polar lipid profile consists of the major lipids diphasphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinerine and trace amounts of two unidentified lipids. \textit{meso}-Diaminopimelic acid is the characteristic diamino acid of the peptidoglycan, and spermidine is the predominant compound in the polyamine pattern. Major fatty acids are anteiso-C\(_{15:0}\), iso-C\(_{16:0}\) and C\(_{16:0}\). In addition, iso-C\(_{14:0}\), C\(_{16:1 \omega 7c}\), iso-C\(_{15:0}\), C\(_{14:0}\) anteiso-C\(_{17:0}\) and iso-C\(_{17:0}\) are detected. The type stain AP-115\(^T\) (=LMG 29222\(^T\)=CCM 8653\(^T\)) was isolated in Auburn, AL, USA. The isolate came from a field-grown cucumber plant.

References

Acknowledgements

We thank Gundula Will, Maria Sowinsky and Katja Grebing for excellent technical assistance.

Table 2. Differential phenotypic characteristics of strain AP-115\(^T\) and the most closely related species of the genus \textit{Paenibacillus}.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid produced from:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Lactose</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Raffinose</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Assimilation of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{N}-Acetyl-D-galactosamine</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cellobiose</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D-Fructose</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-Rhamnose</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>\textit{myo}-Inositol</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pyruvate</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Hydrolysis of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pNP-\textit{β}-D-glucuronide</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>t-Alanine-pNA</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
</tbody>
</table>
Urea decomposition as a means of differentiating Proteus and Salmonella from other genera and from Shigella species and Shigella species. J Bacteriol 50, 461–466.

