Marinobacterium profundum sp. nov., a marine bacterium from deep-sea sediment

Chung Yeon Hwang,1 Soo Jung Yoon,1 Inae Lee,1 Kiwoon Baek,1 Yung Mi Lee,1 Kyu-Cheul Yoo,2 Ho Il Yoon2 and Hong Kum Lee1

1Division of Polar Life Sciences, Korea Polar Research Institute, 26 Songdomiare-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea
2Division of Climate Change, Korea Polar Research Institute, 26 Songdomiare-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea

A Gram-stain-negative, rod-shaped and motile strain, designated PAMC 27536T, was isolated from deep-sea sediment in the East Sea, Korea. Analysis of the 16S rRNA gene sequence of the strain showed an affiliation with the genus Marinobacterium. Phylogenetic analyses revealed that strain PAMC 27536T was related most closely to Marinobacterium rhizophilum CL-YJ9T with a 16S rRNA gene sequence similarity of 98.5 % and to other members of the genus Marinobacterium (94.0–91.7 %). Genomic relatedness analyses between strain PAMC 27536T and M. rhizophilum KCCM 42386T gave an average nucleotide identity of 85.6 % and an estimated DNA–DNA hybridization of 24.6 % using the genome-to-genome distance calculator, indicating that they represent genomically distinct species. Cells of strain PAMC 27536T grew optimally at 25–30 °C and pH 7.0–7.5 in the presence of 3 % (w/v) sea salts. The major cellular fatty acids were C16:0 and/or C16:1ω5c and/or C16:1ω7c, C18:1ω9c6 and/or C18:1ω7c, and C16:0. The major isoprenoid quinone was Q-8. The genomic DNA G+C content was 56.1–57.2 mol%. Based on the phylogenetic, chemotaxonomic, genomic and phenotypic data presented, a novel species with the name Marinobacterium profundum sp. nov. is proposed, with PAMC 27536T (=KCCM 43095T=JCM 30410T) as the type strain.

The genus Marinobacterium was established by González et al. (1997) for a marine bacterium isolated from lignin-rich pulp mill waste, with Marinobacterium georgiense as the type species. Phylogenetic analyses of 16S rRNA and gyrB gene sequences have improved the classification of members of the genus Marinobacterium, with the transfer of Pseudomonas staniieri (Baumann et al., 1983) and Oceanospirillum jannaschii (Bowditch et al., 1984) to Marinobacterium staniieri and Marinobacterium jannaschii, respectively (Satomi et al., 2002). The genus Marinobacterium belongs to the family Alteromonadaceae, and members of this genus contain C16:0ω6c and/or C16:1ω7c, C18:1ω6c and/or C18:1ω7c, and C16:0 as the major fatty acids and Q-8 as the major respiratory quinone (González et al., 1997; Kim et al., 2008; Chometto et al., 2011; Alfaro-Espinoza & Ullrich, 2014). The genomic DNA G+C content of Marinobacterium species with validly published names ranges from 54.9 to 62.5 mol% (González et al., 1997; Huo et al., 2009). In addition to the aforementioned species, ten Marinobacterium species have been isolated from marine habitats, including coastal seawaters (M. litorale, Kim et al., 2007; M. marisflavi, Kim et al., 2009a), tidal flats (M. halophilum, Chang et al., 2007; M. lutimaris, Kim et al., 2010), roots of salt-tolerant plants (M. rhizophilum, Kim et al., 2008; M. mangrovicola, Alfaro-Espinoza & Ullrich, 2014), sediments (M. nitratireducens and M. sediminicola, Huo et al., 2009; M. maritimim, Kim et al., 2009b) and coral (M. coralli, Chometto et al., 2011). Here, we isolated a bacterial strain (PAMC 27536T) during a study to screen for methanol-utilizing bacteria associated with the biogeochemical processes of deep-sea sediments, and performed a polyphasic analysis to determine the taxonomic position of the strain.

A sediment core was collected using a box corer on R/V Araon in the East Sea (35.90° N 129.77° E; water column depth of 840 m) in July 2013. A surface sample of the sediment core amended with methanol (Sigma; final concentration of approximately 1 %) was incubated at 20 °C for 30 days to enrich methanol-utilizing bacteria. Subsequently, the methanol-amended sediment sample was diluted approximately 50-fold with autoclaved 3 % (w/v)
NaCl solution. An aliquot (100 µl) of the sediment slurry was spread on the basal agar medium (per litre distilled water: 23.6 g NaCl, 0.64 g KCl, 4.53 g MgCl₂•6H₂O, 5.94 g MgSO₄, 7H₂O, 1.3 g CaCl₂, 2H₂O, 0.2 g NaNO₃, 0.2 g NH₄Cl, 15 g agar, 0.05 g yeast extract; Bruns et al., 2001) supplemented with methanol as sole carbon source (final concentration 0.5 %) and the plate was incubated at 20 °C under aerobic conditions for 10 days. Colonies were picked and checked for growth on marine agar 2216 (MA; Difco) as a conventional cultivation medium.

Phenotypic characteristics of strain PAMC 27536T were tested in duplicate along with M. rhizophilum KCCM 42386T, with repeat experiments on different days. Gram-staining was performed using a Gram-stain kit (Sigma). Cell morphology was examined by transmission electron microscopy (EX2; JEOL). Anaerobic growth was tested in an anaerobic jar (BBL) containing an AnaeroPak (Mitsubishi Gas Chemical) at 25 °C for 5 days. The temperature range for growth was examined by the ability to form colonies on MA with incubation at 4, 10–30 (in increments of 5 °C), 32, 34, 37 and 42 °C. The pH range (pH 5.0–11.0 at intervals of 0.5 pH units) for growth was determined by assessing turbidity measured as OD₆₀₀ in pH-buffered MB (Hwang & Cho, 2008) using citric acid-phosphate buffer for pH 5.0, MES for pH 5.5–6.5, MOPS for pH 7.0–7.5, AMPD for pH 8.0–9.5 and CAPS for pH 10.0–11.0 (each at a final concentration of 50 mM at 25 °C), for up to 2 weeks. Salt tolerance was determined by assessing turbidity measured as OD₆₀₀ at 25 °C using synthetic ZoBell broth (per litre distilled water: Bacto peptone, 5 g; yeast extract, 1 g; ferric citrate, 0.1 g) supplemented with 0–6 (at intervals of 1 %), 8, 10 and 12 % (w/v) sea salts (Sigma).

Catalase and oxidase tests were performed according to the methods described by Smibert & Krieg (1994) and Cappuccino & Sherman (2002), respectively. Hydrolysis of casein, starch, Tween 80, xanthine and hypoxanthine, and deaminase activities of orinine, lysine and arginine were investigated as described by Hansen & Sørheim (1991). H₂S production was tested as described by Bruns et al. (2001). In addition, other enzyme activities using the API ZYM and API 20NE kits (bioMérieux) and acid production using the API 50CH kit (bioMérieux) were assayed according to the manufacturer’s instructions except that the cell suspension was prepared as described by Hwang et al. (2009). Utilization of various substrates as sole carbon and energy sources was tested using the basal broth medium supplemented with yeast extract (per litre distilled water: 23.6 g NaCl, 0.64 g KCl, 4.53 g MgCl₂•6H₂O, 5.94 g MgSO₄•7H₂O, 1.3 g CaCl₂•2H₂O, 0.2 g NaNO₃, 0.2 g NH₄Cl, 0.05 g yeast extract; Bruns et al., 2001) with a final concentration of 0.4 % carbon source. Carbon utilization was scored as negative when growth was equal to, or less than, that in the negative control with no carbon source. Growth was measured by monitoring changes in the OD₆₀₀ at 25 °C for 3 weeks.

Cells of strain PAMC 27536T were rods approximately 0.7–1.0 µm wide and 1.9–2.4 µm long (Table 1). Strain PAMC 27536T grew optimally at 25–30 °C and pH 7.0–7.5 in the presence of 3 % (w/v) sea salts and was positive for catalase and oxidase activities. Other physiological and biochemical characteristics of strain PAMC 27536T are given in the species description and Table 1. Strain PAMC 27536T could be phenotypically distinguished from M. rhizophilum...
KCCM 42386T based on the temperature and salinity ranges for growth, ability to utilize melibiose as sole carbon and energy source and inability to produce α-glucosidase in the API ZYM assay (Table 1). In addition, acid production from 12 carbohydrates in the API 50CH assay gave different results for the two strains (Table 1).

Table 1. Differential characteristics between strain PAMC 27536T and M. rhizophilum KCCM 42386T

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>PAMC 27536T</th>
<th>M. rhizophilum KCCM 42386T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature range (°C) for growth (optimum)</td>
<td>4–32 (25–30)</td>
<td>10–34 (25–30)</td>
</tr>
<tr>
<td>Salinity range (% w/v) for growth (optimum)</td>
<td>1–4 (3)</td>
<td>1–6 (3)</td>
</tr>
<tr>
<td>pH range for growth (optimum)</td>
<td>6.0–9.0 (7.0–7.5)</td>
<td>6.0–9.0 (7.0)</td>
</tr>
<tr>
<td>α-Glucosidase</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Acid production from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Adonitol, D-arabitol, L-arabitol, cellulose, D-glucose, inositol, inulin, methyl α-D-glucopyranoside, trehalose, turanose, xylitol</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Raffinose</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Utilization as sole carbon and energy source:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Acetyl-D-glucosamine</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Melibiose</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>DNA G+C content (mol%; HPLC analysis)</td>
<td>56.1 (57.2)*</td>
<td>61†</td>
</tr>
</tbody>
</table>

*Whole genome analysis.
†Data from Kim et al. (2008).
extracted using a commercial kit (DNeasy Blood & Tissue kit; Qiagen). The genome sequence of strain PAMC 27536T
was determined using an Illumina MiSeq sequencer and assembled using CLC Genomics Workbench 7.0 (Qiagen) at the ChunLab (Seoul, Korea). The draft genome of strain PAMC 27536T was deposited at DDBJ/EMBL/GenBank under accession number BCNS01000000. A draft genome sequence of M. rhizophilum DSM 18822T was retrieved from GenBank under accession number ARJMO00000000 (5 360 582 bp with 68 contigs and DNA G+C content of 58.5 mol%). The degree of genome-based relatedness between strain PAMC 27536T and M. rhizophilum DSM 18822T was estimated by both an average nucleotide identity (ANI) value, following the BLAST-based ANI calculation method described by Goris et al. (2007), and the genome-to-genome distance calculation method described by Auch et al. (2010). The genomic DNA G+C content of strain PAMC 27536T was also determined by both HPLC analysis (Tamaoka & Komagata, 1984) carried out by the identification service of the KCCM and whole genome analysis calculated from the draft genome. The major fatty acids (>10 %) of strain PAMC 27536T were C16:1ω6c and/or C16:1ω7c (42.7 %), C18:1ω6c and/or C18:1ω7c (20.9 %), and C16:0 (19.1 %; Table S1, available in the online Supplementary Material), which are typically found as major components in members of the genus Marinobacterium (Kim et al., 2008; Chimetto et al., 2011; Alfar© Espinoza & Ullrich, 2014). No major differences were found in the fatty acid profiles of strain PAMC 27536T and M. rhizophilum KCCM 42386T (Table S1).

The draft genome of strain PAMC 27536T contained 5 637 742 bp in 226 contigs with a DNA G+C content of 57.2 mol% and coverage of 169 x. The ANI value between strain PAMC 27536T and the type strain of M. rhizophilum was 85.6 %, which is below the proposed cut-off ANI values of 95–96 % for delineating bacterial species (Goris et al., 2007; Richter & Rosselló-Móra, 2009). Consistently, the mean DNA–DNA hybridization value estimated by genome-to-genome distance calculation was 24.6 ± 2.4 % between strain PAMC 27536T and the type strain of M. rhizophilum, indicating that PAMC 27536T is a member of a separate species of the genus Marinobacterium (Rosselló-Móra & Amann, 2001).

The genomic DNA G+C content of strain PAMC 27536T was 56.1 mol% as determined by HPLC analysis, which was similar to that based on calculation from the draft genome of the strain (57.2 mol%; Table 1). The DNA G+C content of strain PAMC 27536T was lower than that of its phylogenetically closest relative, M. rhizophilum KCCM 42386T (61 mol%; Kim et al., 2008), but nevertheless was within the range of other Marinobacterium species (54.9–62.5 mol%; González et al., 1997; Huo et al., 2009).

Although strain PAMC 27536T was isolated from a methanol-enriched sediment sample, growth was not detected in the medium employed here when supplemented with methanol as sole carbon source (final concentration of 0.1 or 0.4 %). However, the draft genome of PAMC 27536T exhibits the presence of genes encoding the biosynthesis of alcohol dehydrogenase and a coenzyme pyrroloquinoline quinone (PQQ) (data not shown), which play a key step in methylotrophic metabolism (i.e. oxidation of methanol to formaldehyde; Witthoff et al., 2013), suggesting the potential of this strain as a methanol-utilizing bacterium.

The phylogenetic, chemotaxonomic, genomic and phenotypic data obtained in this study indicate that strain PAMC 27536T should be assigned to a novel species in the genus Marinobacterium, for which the name Marinobacterium profundum sp. nov. is proposed.

Description of Marinobacterium profundum sp. nov.

Marinobacterium profundum (pro.fun’dum. L. neut. adj. profundum deep, living within the depth of the oceans).

Gram-stain-negative, strictly aerobic, motile rods approximately 0.7–1.0 μm wide and 1.9–2.4 μm long. After 7 days on MA at 30 °C, colonies are creamy white, circular, convex and approximately 0.5 mm in diameter. Grows at 4–32 °C (optimum, 25–30 °C) and at pH 6.0–9.0 (optimum, pH 7.0–7.5). Growth occurs at sea-salt concentrations of 1–4 % (w/v) (optimum, 3 %). Positive for oxidase and catalase. Starch, Tween 80 and hypoxanthine are hydrolysed. Casein, aesculin, gelatin and xanthine are not hydrolysed. Indole production, H2S production, glucose fermentation and nitrate reduction are negative. Alkaline phosphatase, esterase (C4), leucine arylamidase, valine arylamidase, acid phosphatase and naphthol-AS-BI-phosphohydrolase are positive; esterase lipase (C8) is weakly positive; N-acetyl-β-glucosaminidase, arginine dihydrolase, α-chymotrypsin, cystine arylamidase, α-fucosidase, α-galactosidase, α-glucosidase, β-glucosidase, β-glucuronidase, lipase (C14), L-mannosidase, urease and trypsin are negative. Acid is produced from L-arabinose, D-fructose, DL-fucose, glycerol, melibiose (weakly), raffinose, L-rhamnose (weakly), potassium 2-ketogluconate and sucrose, but not from N-acetylgulcosamine, D-adonitol, amygdalin, D-arabinose, DL-arabitol, arbutin, cellobiose, dulcitol, erythritol, aesculin ferric citrate, D-galactose, gentiobiose, D-glucose, glycogen, inositol, inulin, lactose, D-lyxose, maltose, D-mannitol, D-mannose, methyl α-D-glucopyranoside, methyl α-D-mannopyranoside, melezitose, methyl β-D-xylopyranoside, potassium gluconate, potassium 5-ketogluconate, D-ribose, salicin, D-sorbitol, L-sorbose, starch, D-tagatose, trehalose, turanose, xyitol or DL-xylitol. N-Acetyl-D-glucosamine, DL-aspartate, glycogen, melibiose, L-ornithine, L-proline, pyruvate and succinate are utilized as sole carbon and energy source, but acetate, L-arabinose, cellobiose, citrate, formate, D-fructose, D-galactose, D-glucose, glycerol, inositol, lactose, maltose, D-mannitol, D-mannose, methanol, raffinose, L-rhamnose, L-threoine, trehalose and...
sucrose are not utilized. Major fatty acids are C_{16:1}, C_{16:0}c,d and/or C_{16:1}, C_{17:0}, C_{18:0}c,d and/or C_{17:0}c,d, and C_{18:0}.

The type strain, PAMC 27536T (=KCCM 43095T=JCM 30410T), was isolated from deep-sea sediment. The DNA G+C content of the type strain is 56.1 mol% (HPLC analysis) – 57.2 mol% (whole genome analysis).

Acknowledgements

We thank the crew and captain of R/V Aran for their excellent cooperation during the cruise. This work was supported by grants of the Korea Polar Research Institute (PP15010 and PE15080).

References

