Ehrlichia minasensis sp. nov., isolated from the tick *Rhipicephalus microplus*

Alejandro Cabezas-Cruz,† Erich Zweygarth,‡ Marie Vancová,* Marzena Broniszewska,§ Libor Grubhoffer,* Lygia Maria Friche Passos,¶ Múcio Flávio Barbosa Ribeiro,* Pilar Alberdi,‖ and José de la Fuente∗,†,‡,§,¶,‖,‖,‖,‖,‖,‖,‖,‖

Correspondence
José de la Fuente
jose_delafuente@yahoo.com

1Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204, Université de Lille, Institut Pasteur de Lille, 1 rue Professeur Calmette, 59019 Lille Cedex, France
2Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Leopoldstrasse 5, 80802 Munich, Germany
3Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
4University of South Bohemia, Faculty of Science and Biology Centre of the ASCR, Institute of Parasitology, České Budějovice, Czech Republic
5Departamento de Medicina Veterinária Preventiva, Escola de Veterinária-UFMG, Belo Horizonte, Minas Gerais, Brazil
6Departamento de Parasitologia, ICB-UFMG, Belo Horizonte, Brazil
7SaBio. Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
8Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA

Recently, we obtained a rickettsial isolate (*Ehrlichia* sp. UFMG-EVT) from the haemolymph of engorged *Rhipicephalus microplus* tick females. On the basis of maximum-likelihood phylogenetic analysis using 16S rRNA gene, *groEL*, *dsb*, *gltA* and *trp36* sequences we showed that *Ehrlichia* sp. UFMG-EVT belongs to the *α*-Proteobacteria, family *Anaplasmataceae*, genus *Ehrlichia*. *Ehrlichia* sp. UFMG-EVT is a sister taxon of *Ehrlichia canis* with 16S rRNA gene, *groEL*, *dsb*, *gltA* and *trp36* sequence similarities of 98.3 %, 97.2 %, 94.7 %, 94.3 % and 49.1 %, respectively. *Ehrlichia* sp. UFMG-EVT has been maintained in the laboratory by continuous passage in the IDE8 tick cell line where the ultrastructure was characterized using electron microscopy and was found to resemble that of *E. canis*, *Ehrlichia muris* and *Ehrlichia chaffeensis*, but not *Ehrlichia ruminantium* and *Ehrlichia ewingii*. We propose the name *Ehrlichia minasensis* sp. nov. for this bacterium to acknowledge the place from where it was initially isolated, Minas Gerais, Brazil. The type strain is strain *Ehrlichia* sp. UFMG-EVT (=DSM 100393T=TCC-TBB-0018T).

The genus *Ehrlichia* was reorganized by Dumler et al. (2001) and at the time of writing, comprises five recognized species, *Ehrlichia canis*, *E. muris*, *E. chaffeensis*, *E. ruminantium* and *E. ewingii*. Members of this genus are tick-borne bacteria affecting mainly dogs (*E. canis*, *E. chaffeensis* and *E. ewingii*), mice (*E. muris*) and ruminants (*E. ruminantium*). However, some species have also been found to infect humans (*E. canis*, *E. ruminantium*, *E. chaffeensis* and *E. ewingii*) (Allsopp et al., 2005; Perez et al., 2006; Thomas et al., 2009). Transmission of species of the genus *Ehrlichia* has been associated with different hard tick species such as *Rhipicephalus sanguineus* and *Dermacentor variabilis* (*E. canis*), *Amblyomma americanum* and *Dermacentor variabilis* (*E. chaffeensis* and *E. ewingii*), *Haemaphysalis* spp. and *Ixodes* spp. (*E. muris*) and *Amblyomma* spp. (*E. ruminantium*) (Rar & Golovljova, 2011). We have recently reported the *in vitro* culture, molecular and morphological characterization of a novel species of *Ehrlichia* (Cabezas-Cruz et al., 2012, 2013; Zweygarth et al., 2013) which appears to have evolved from highly variable strains of *E. canis* (Cabezas-Cruz et al., 2014).

†These authors contributed equally to this work.
The isolation and the in vitro cultivation of *Ehrlichia* sp. UFMG-EVT have been previously described (Cabezas-Cruz et al., 2012; Zweygarth et al., 2013). *Ehrlichia* sp. UFMG-EVT organisms have been cultured in tick cell lines IDE8 and ISE18 derived from *Ixodes scapularis* ticks (Munderloh & Kurtti, 1989), IRE/CTVM20 derived from *Ixodes ricinus* ticks (Bell-Sakyi et al., 2007), BME/CTVM2 and BME/CTVM6 derived from *Rhipicephalus microplus* ticks (Bell-Sakyi 2004), BDE/CTVM14 derived from *Rhipicephalus decoroloratus* ticks (Lallinger et al. 2010) and OME/CTVM22 derived from *Ornithodoros moubata* ticks (Bell-Sakyi et al., 2009). The IDE8 cell line was used to isolate *Ehrlichia* sp. UFMG-EVT and heavily infected culture suspensions were centrifuged at 290 g for 2 min to remove the majority of the host cells, and 1 ml bacterial suspension was then used to infect the different tick cell lines.

The tick cell lines ISE18, IRE/CTVM20, BME/CTVM2 and BME/CTVM6 were successfully infected with *Ehrlichia* sp. UFMG-EVT initial bodies originating from infected IDE8 cultures, whereas cell line OME/CTVM22 was refractory to infection. In contrast, BDE/CTVM14 cells could not be infected with material derived from IDE8 cell cultures, but could be when the infectious material derived from an infected BME/CTVM6 culture was used. Furthermore, *Ehrlichia* sp. UFMG-EVT infection was lost after three passages in BME/CTVM2 cells, whereas in all other tick cell lines (ISE18, IRE/CTVM20 and BME/CTVM6) *Ehrlichia* sp. UFMG-EVT cultures were passaged at least three times before being terminated.

IDE8 cultures heavily infected with *Ehrlichia* sp. UFMG-EVT were harvested when more than 50 % of the cells had detached from the substrate. The cell culture suspension was then centrifuged at 290 g for 2 min to remove the majority of the host cells. One millilitre of the cell suspension was distributed into culture flasks containing DH82 bovine aorta endothelial cells (Yunker et al., 1988) or BA886 bovine aorta endothelial cells (Yunker et al., 1988) together with 4 ml modified L-15B medium and incubated at 34 °C. After 3 days, the medium was replaced with 5 ml fresh medium. Endothelial cells were found to harbour small colonies 16 days after infection, DH82 cells were found to be positive 2 days thereafter. *Ehrlichia* sp. UFMG-EVT was propagated in DH82 cells for more than 1 year, with a mean subculture interval of 22 days. Bovine endothelial cells were propagated for 132 days, with a mean subculture interval of 22 days.

Maximum-likelihood and neighbour-joining phylogenetic analyses were conducted using 16S rRNA gene (GenBank accession no. JX629805), *dsb* (JX629808), *trp36* (JX629809), *gltA* (JX629807) and *groEL* (JX629806) sequences of *Ehrlichia* sp. UFMG-EVT (Cabezas-Cruz et al., 2012). High bootstrap values (>93 %) in the phylogenetic trees, using the above genes, support the position of *Ehrlichia* sp. UFMG-EVT as a novel species of the genus *Ehrlichia*, closely related to *E. canis* (Cabezas-Cruz et al., 2012; Aguiar et al., 2014). *Ehrlichia* sp. UFMG-EVT has 98.3 % 16S rRNA gene sequence similarity to *E. canis* TWN (GenBank accession no. GU810149), 96.9 % to *E. chaffeensis* (AF147752), 96.4 % to *E. ewingii* 95E9-TS (U96436), 94.5 % to *E. muris* I268 (AB013008) and 95 % to *E. ruminantium* Mara 87/7 (AF069758) as calculated by pairwise comparisons (Cabezas-Cruz et al., 2012).

In addition, the 16S rRNA gene sequence from species of the genus *Ehrlichia* has a highly variable fragment located at the 5’ end of the gene, which is useful in identifying members of the genus *Ehrlichia* (Warner & Dawson, 1996). *Ehrlichia* sp. UFMG-EVT shows three changes in nucleotides in this region when compared to *E. canis* (Cabezas-Cruz et al., 2012). To further support previous analyses (Cabezas-Cruz et al., 2012; Zweygarth et al., 2013; Aguiar et al., 2014), we provide here a revised 16S rRNA gene phylogenetic tree of the genus *Ehrlichia* where *Ehrlichia* sp. UFMG-EVT clearly represents a novel species within this genus (Fig. 1).

We sequenced the genome of *Ehrlichia* sp. UFMG-EVT using DNA extracted from *Ehrlichia* purified from IDE8 cells (Cabezas-Cruz et al., 2015). The genome of *Ehrlichia* sp. UFMG-EVT (GenBank accession no CDGH01000001–CDGH01000187) consists of 1 414 066 bp, with a G+C content of 30.3 mol%. The origin of replication (oriC), predicted by similarity to the *E. canis* Jake oriC region defined at the DorIC database (http://tubic.tju.edu.cn/doric/info1.php?ac=ORI0030069), seems to be placed in contig ehr000001 in the intergenic space upstream of the divergent genes encoding Uroporphyrinogen decarboxylase (UPD) (EC 4.1.1.37) and Cytochrome c oxidase, subunit III (EC 1.9.3.1), three genes downstream of the *dsb* gene. The genome of *Ehrlichia* sp. UFMG-EVT resulted in 944 genes, including protein-coding sequences (CDSs), RNA genes and pseudogenes. Of them, 322 genes encode proteins with enzymic activity, 51 encode membrane proteins, 55 are involved in DNA repair and 144 are connected with oxidoreduction processes (Cabezas-Cruz et al., 2015). Taking in account the scarcity of genomic data from the genus *Ehrlichia* (Fig. 1), the genome of *Ehrlichia* sp. UFMG-EVT will contribute to the study of the genetic diversity of this group of bacteria.

Recently, the same species (strain *Ehrlichia* sp. UFMT-BV) was isolated by another group in Brazil and was shown to be pathogenic to cattle (Aguiar et al., 2014). Phylogenetic and evolutionary analyses using the *trp36* gene showed that both *Ehrlichia* sp. UFMG-EVT and *Ehrlichia* sp. UFMT-BV evolved recently from a highly variable clade of *E. canis* under adaptive diversifying selection (Cabezas-Cruz et al., 2014). This suggested that *Ehrlichia* sp. UFMG-EVT represents an example of recent host-shift within the genus *Ehrlichia*. In agreement with this, firstly, while the common tick vector for *E. canis* is *Rhipicephalus sanguineus*, *Ehrlichia* sp. UFMG-EVT was isolated from *Rhipicephalus microplus* haemolymph (Cabezas-Cruz et al., 2012) and secondly, while *E. canis* is mainly pathogenic for dog, *Ehrlichia* sp. UFMT-BV was found to be pathogenic for cattle (Aguiar et al., 2014).
Fig. 1. Neighbour-joining phylogenetic tree of the genus *Ehrlichia* based on 16S rRNA gene sequences from 153 members of the genus *Ehrlichia* collected from the GenBank database. Species of the genus *Ehrlichia* for which at least one genome is published are shown (filled circles). Clusters for which more than one isolate has been reported were collapsed (bold names). GenBank accession numbers of unique isolates are shown in parentheses.
For the morphological characterization of Ehrlichia sp. UFMG-EVT we used electron microscopy. Infected IDE8 cells were prepared by high-pressure freezing and freeze substitution method, and were embedded into epoxide resin as described previously (Cabezas-Cruz et al., 2013). We found micro-colonies of Ehrlichia sp. UFMG-EVT located inside membrane-bound vacuole(s) in the cytoplasm of host cells. Vacuoles were surrounded by mitochondria and cisterns of rough endoplasmic reticulum and contained fibrillar materials. Vacuoles contained round- or oval-shaped bacteria of 0.4–1.5 μm diameter with a Gram-negative cell-wall structure. We observed binary fission only in the reticulate forms. Reticulated and electron-dense forms were present either simultaneously in one vacuole, or one vacuole contained only one morphological form (Fig. 2). Similarly, non-synchronized maturation was observed in E. chaffeensis replicating in the tick cell line ISE6 (Dedonder et al., 2012). Rarely, vacuoles were opened to the extracellular space. These results indicate morphological similarity of Ehrlichia sp. UFMG-EVT to E. canis-E. chaffeensis strains (Popov et al., 1998).

Taken together, these data indicate that Ehrlichia sp. UFMG-EVT represents a novel species of the genus Ehrlichia, for which the name Ehrlichia minasensis sp. nov. is proposed.

Description of Ehrlichia minasensis sp. nov.

Ehrlichia minasensis (mi.nas.en’sis. N.L. fem. adj. minasensis pertaining to Minas Gerais).

An obligate intracellular bacterium found in haemolymph of the cattle tick Rhipicephalus microplus and pathogenic for cattle. Can be grown in Ixodes scapularis cell lines (IDE8) and dog macrophages (DH82) at 32 °C and 37 °C, respectively. The ultrastructural appearance of the culture isolate is typical for the genus Ehrlichia (Fig. 2). The organism is located inside membrane-bound vacuoles in the cytoplasm of host cells (Fig. 2). Bacterial cells are round or oval, 0.4–1.5 μm diameter and can be observed inside host cells using Giemsa stain. To date, the species has been isolated from Rhipicephalus microplus and naturally infected cattle from Brazil and Canada. Phylogenetic analyses (Fig. 1) and the draft 1.41 Mb genome sequence indicates that the species is a sister taxa of E. canis.

The type strain, Ehrlichia sp. UFMG-EVT (= DSM 100393'T = TCB-TBB-0018'T), was isolated from a partially engorged Rhipicephalus microplus female collected in Minas Gerais, Brazil in 2010. The G+C content of the type strain is 30.3 mol% (genome sequencing).

Acknowledgements

This research was supported by the EU FP7 ANTIGONE project number 278976. The authors thank Dr Ulrike G. Munderloh (University of Minnesota, USA) for permission to use the IDE8 cell line, and Dr Lesley Bell-Sakyi and the Tick Cell Biobank at The Pirbright Institute, UK. ACC was supported by a grant from the Ministère de l’Éducation Supérieure et de la Recherche de France.

References

http://ijs.microbiologyresearch.org

