Streptosporangium saharense sp. nov., an actinobacterium isolated from Saharan soil

Fawzia Chaabane Chaouch, 1 Noureddine Bouras, 1,2 Salim Mokrane, 1 Abdelghani Zitouni, 1 Peter Schumann, 3 Cathrin Spröer, 3 Nasserdine Sabaou 1 and Hans-Peter Klenk 4

1 Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria
2 Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaïa, BP 455, Ghardaïa 47000, Algeria
3 DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
4 School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne NE1 7RU, UK

Correspondence
Nasserdine Sabaou
sabaou@yahoo.fr
Hans-Peter Klenk
hans-peter.klenk@ncl.ac.uk

A novel actinobacterium, designated strain SG20 T, was isolated from a Saharan soil sample collected from Béni-isguen (Mzab), Ghardaïa province, southern Algeria. The micro-organism developed small roundish sporangia on aerial mycelium that were sessile or carried by very short sporangiophores. The cell-wall peptidoglycan contained meso-diaminopimelic acid and the whole-cell sugars comprised glucose, ribose and mannose, but madurose was not detected. The predominant menaquinones were MK-9(H4), MK-9(H6) and MK-9(H2). The major fatty acids were iso-C16 : 0 and C16 : 0. The phospholipids detected were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmannositol, phosphatidylethanolamine and unknown lipids. The phenotypic and chemotaxonomic characteristics of the novel strain resembled those of recognized members of the genus Streptosporangium. Moreover, phylogenetic analysis based on a 16S rRNA gene sequence generated from the strain identified its closest relative as Streptosporangium jomthongense DSM 46822 T (98.5 % similarity), which produces single spores on aerial mycelium, but no sporangia. In hybridization experiments, the DNA–DNA relatedness values recorded between strain SG20 T and S. jomthongense DSM 46822 T fell well below 70 %. On the basis of phenotypic and genotypic data, strain SG20 T can be distinguished as representing a novel species of the genus Streptosporangium, for which the name Streptosporangium saharense sp. nov. is proposed. The type strain is SG20 T (= DSM 46743 T = CECT 8840 T).

The genus Streptosporangium, belonging to the family Streptosporangiaceae, was first established by Couch (1955) with Streptosporangium roseum as the type species. Subsequently, Stackebrandt et al. (1994) and Intra et al. (2014) emended the description of the genus Streptosporangium. In the List of Prokaryotic names with Standing in Nomenclature (http://www.bacterio.cict.fr/index.html), 19 species and two subspecies of the genus Streptosporangium were cited at the time of writing, including the newly described species Streptosporangium nanhuense (He et al., 2014) and Streptosporangium jomthongense (Intra et al., 2014).

The GenBank /EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain SG20 T is KT581983.

One supplementary table and two supplementary figures are available with the online Supplementary Material.

The genus Streptosporangium as now defined comprises aerobic, Gram-positive, non-acid-fast, non-motile microorganisms that generate abundantly branched, non-fragmenting substrate mycelia which carry aerial hyphae that differentiate into spherical spore vesicles that enclose non-motile sporangiospores; however, non-motile single spores without sporangia may be produced (Intra et al., 2014). Chemotaxonomically, members of the genus Streptosporangium are characterized by the presence of meso-diaminopimelic acid in the cell wall, and usually madurose in the whole-cell hydrolysates (Stackebrandt et al., 1994). Strains in the genus Streptosporangium have di- and tetra-hydrogenated menaquinones with nine isoprene units, and diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylglycerol, phosphatidylglycerol, and glucosamine-containing phospholipids as major phospholipids (Quintana & Goodfellow, 2012).
Strain SG20T was isolated as part of a discovery and identification programme for rare actinobacteria from Saharan soils of Algeria that may produce novel metabolites with potential medical applications. Previous studies from the same programme reported the presence of novel strains of the genus *Streptosporangium* that produce novel compounds with both antibacterial and antifungal activities (Hacène et al., 1998; Boudjella et al., 2006, 2007, 2010). The aim of the present study was to determine the taxonomic status of an actinobacterium, strain SG20T, isolated from a Saharan soil sample collected from Béni-isguen (Mzab), Ghardaia province, southern Algeria. The micro-organism was the subject of a polyphasic taxonomic study, which showed that it represents a novel species of the genus *Streptosporangium*.

Strain SG20T was isolated from a soil sample that was air-dried at room temperature for 10 days before being baked at 120 °C for 1 h (Hayakawa et al., 1991). The soil was then suspended in sterile distilled water, serially diluted and spread-plated on chitin–vitamin B agar medium (Hayakawa & Nonomura, 1987) supplemented with penicillin (25 mg l\(^{-1}\)). After 21 days of incubation at 30 °C, the strain was transferred and purified on yeast extract-malt extract agar (ISP 2 medium of the International Streptomyces Project; Shirling & Gottlieb, 1966), and was maintained as working cultures on this medium.

General cell morphology was studied by light microscopy (model B1; Motic) and scanning electron microscopy (JSM-7100F; JEOL) of a 21-day-old culture of strain (model B1; Motic) and scanning electron microscopy. General cell morphology was studied by light microscopy maintained as working cultures on this medium.

For cultural characterization, strain SG20T was grown on ISP 2 medium (Shirling & Gottlieb, 1966). The colours of substrate and aerial mycelia and any diffusible pigments produced were determined by comparison with ISCC-NBS colour charts (Kelly & Judd, 1976).

Decomposition of adenine, cellulose, gelatin, guanine, hypoxanthine, milk casein, starch, Tween 80, tyrosine and xanthine, and also coagulation and peptonization of milk and reduction of nitrate were determined as described by Goodfellow (1971) and Marchal et al. (1987). Utilization of compounds as sole carbon source was tested according to Gordon et al. (1974) and Williams et al. (1989). Temperature and pH ranges for growth and NaCl tolerance were determined on ISP 2 medium.

Chemotaxonomic analysis was conducted using biomass, obtained at 30 °C after 7 days, of strain culture in shake flasks (250 r.p.m.) containing nutrient–yeast extract broth (Becker et al., 1964), harvested by centrifugation and washed several times with distilled water. The isomeric form of dianamopimelic acid and whole-cell sugars were detected following standard procedures described by Becker et al. (1964) and Lechevalier & Lechevalier (1970). Phospholipids were analysed according to the procedures developed by Minnikin et al. (1977). Menaquiones were isolated according to Minnikin et al. (1984) and were analysed by HPLC (Kroppenstedt, 1982, 1985). The cellular fatty acid composition was studied as described by Sasser (1990) using the Microbial Identification System (MIDI) Sherlock version 6.1 (TSBA40 database).

Genomic DNA was extracted with a DNA extraction kit (MasterPure Gram Positive DNA Purification kit; Epicentre Biotechnologies). PCR-mediated amplification of the 16S rRNA gene and purification of the PCR product were carried out following Rainey et al. (1996). 16S rRNA gene sequence similarities between strain SG20T and the type strains of recognized species of the genus *Streptosporangium* were calculated on the basis of pairwise alignment using the EzTaxon-e server (Kim et al., 2012). The almost-complete 16S rRNA gene sequence of strain SG20T was determined and deposited under accession number KT581983 in the GenBank database. Phylogenetic analyses were conducted using MEGA version 5.05 (Tamura et al., 2011). The 16S rRNA gene sequence of strain SG20T was aligned against neighbouring nucleotide sequences using the CLUSTAL W program (with default parameters) (Thompson et al., 1994). Phylogenetic trees were inferred using the neighbour-joining algorithm (Saitou & Nei, 1987) with the model of Jukes & Cantor (1969), maximum-likelihood algorithm (Felsenstein, 1981) with Kimura’s two-parameter model (Kimura, 1980) and maximum-parsimony algorithm (Fitch, 1977). The stability of the clades in the trees was appraised using a bootstrap analysis with 1000 repeats (Felsenstein, 1985).

For DNA–DNA hybridization, cells were disrupted by using a French pressure cell (Thermo Spectronic). The DNA in the crude lysate was purified by chromatography on hydroxyapatite as described by Cashion et al. (1977). DNA–DNA hybridization was carried out as described by De Ley et al. (1970) under consideration of the modifications described by Huss et al. (1983), using a model Cary 100 Bio UV/ VIS spectrophotometer equipped with a Peltier-thermo-statted 6 × 6 multicl cell changer and a temperature controller with in-situ temperature probe (Varian). DNA–DNA hybridization experiments were performed in duplicates in 2 × SSC in the presence of 10 % formamide at 71 °C. Strain SG20T exhibited good growth on ISP 2, oatmeal agar (ISP 3), peptone/yeast extract/iron agar (ISP 6) and tyrosine agar (ISP 7), but no growth on inorganic salts-starch agar (ISP 4). Strain SG20T developed abundant, aerial hyphae on ISP 2, 3 and 7 media, but not on ISP 6 medium. The colour of the aerial mycelium was pale pink–beige on ISP 2, pinkish beige on ISP 3 and whitish beige on ISP 7 media. The micro-organism formed non-fragmenting substrate mycelium, yellow–brown on ISP 2, pale white to yellow on ISP 3, light brownish beige on ISP 6 and light beige on ISP 7 media. Cells developed small, roundish sporangia (measuring 1–3 μm in diameter) at the ends of very short sporangiophores on aerial mycelium (Fig. 1); sporangia may be also sessile. Sporangiospores were not motile. No diffusible pigment was produced on any of the media tested. Melanoid pigments were not produced on ISP 6 or 7 media. Strain SG20T grew at
Data are from this study. (+), Positive reaction; (−), negative reaction.
they were positioned in different clusters in the phylogenetic tree and shared relatively low 16S rRNA gene sequence similarities (<98.2%). In addition, previous studies have shown that some *Streptosporangium* species have high 16S rRNA gene sequence similarities, but have low DNA–DNA relatedness values (below the 70 % cut-off point). For example, the nearest neighbour *Streptosporangium sandarakinum* DSM 45763^T showed 16S rRNA gene sequence similarity of 99.9 % to *Streptosporangium pseudovulgare* DSM 43181^T. This value (99.9 %) was also found between *Streptosporangium canum* DSM 45034^T and *Streptosporangium roseum* DSM 43021^T, and between *Streptosporangium album* DSM 43023^T and *Streptosporangium vulgare* DSM 43802^T, yet these strains shared low DNA–DNA hybridization (<70 %) (Zhang et al., 2009; Kämpfer et al., 2013). Moreover, the previously accepted value of 97.0 % 16S rRNA gene sequence similarity has been reassessed by statistical comparison of 16S rRNA gene sequences.
gene sequence similarities and DNA–DNA reassociation values, and new thresholds, 98.20 and 98.65 %, were recommended by Meier-Kolthoff et al. (2013) and Kim et al. (2014), respectively, as the point at which DNA–DNA reassociation experiments should be mandatory for testing the genomic uniqueness of a novel species.

Based on data from the present polyphasic study, strain SG20T could be readily differentiated from other members of the genus Streptosporangium and is considered to represent a novel species, for which the name Streptosporangium saharense sp. nov. is proposed.

Description of Streptosporangium saharense sp. nov.

Streptosporangium saharense (sa.har.en’se. N.L. neut. adj. saharense pertaining to Sahara, the source of the soil from which the type strain was isolated).

Aerobic, Gram-stain-positive, mesophilic, non-motile actinobacterium that generates well-developed and branched substrate hyphae. Good growth occurs on ISP 2, 3, 6 and 7 media, but not on ISP 4 medium. Forms non-fragmenting, yellow–brown (on ISP 2), pale white to yellow (on ISP 3), light brownish beige (on ISP 6) and light beige (on ISP medium 7) substrate mycelia that bear pale pink–beige (on ISP 2), pinkish beige (on ISP 3) or white–beige (on ISP 7) aerial mycelia. Small, roundish sporangia (measuring 1–3 μm in diameter) containing non-motile, rod-shaped sporangiospores are formed on aerial mycelia. Sporangia are sessile or carried by very short sporangiophores. No diffusible pigment is detected on ISP 2 and 3 media. Melanoid pigments are not produced on ISP 6 or 7 media. Growth occurs at 20–42 °C (optimum, 25–37 °C) and pH 3.0–12.0 (optimum, pH 4–10). The maximum NaCl concentration for growth is < 1 %. Utilizes L-arabinose, cellobiose, D-galactose, D-glucose, D-mannitol, D-mannose, L-rhamnose, sodium acetate, sodium pyruvate, trehalose and D-xylene, but not sodium adonitol, D-fructose, glycerol, myo-inositol, lactose, maltose, melezitose, melibiose, methyl α-D-glucoside, raffinose, D-ribose, salicin, D-sorbitol, sucrose, benzoate, butyrate, citrate, lactate, oxalate, propionate, succinate or tartrate. Hydrolyses casein, gelatin, Tween 80 and L-tyrosine but not aesculin, arbutin, adenine, cellulose, guanine, hypoxanthine, starch or xanthine. Positive for nitrate reduction and milk peptonization but negative for milk coagulation. The cell wall contains meso-diaminopimelic acid and the whole-cell sugars are ribose, glucose and mannose, but not madurose. The polar lipid profile contains diphosphatidylglycerol, phosphatidylinositol and phosphatidylethanolamine. The predominant menaquinones are MK-9(H4), MK-9(H6), MK-9(H8) and one unknown menaquinone. The major fatty acids are iso-C16:0 and C16:0.

The type strain is SG20T (=DSM 46743T=CECT 8840T) isolated from a Saharan soil sample collected from southern Algeria.

Acknowledgements

We gratefully acknowledge the help of Gabriele Potter (DSMZ) for growing Streptosporangium saharense cultures and for assistance with chemotaxonomic analyses and Bettina Sträußer (DSMZ) for assistance with DNA–DNA hybridizations.

References

