Identification and taxonomic characterization of *Bordetella pseudohinzii* sp. nov. isolated from laboratory-raised mice

1Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
2Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
3United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, IA, USA
4Department of Biology, Lycoming College, Williamsport, PA, USA
5Division of Comparative Medicine, Washington University, St. Louis, MO, USA
6Lee Kong Chian School of Medicine and Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
7J. Craig Venter Institute, Rockville, MD, USA

Bordetella hinzii is known to cause respiratory disease in poultry and has been associated with a variety of infections in immunocompromised humans. In addition, there are several reports of *B. hinzii* infections in laboratory-raised mice. Here we sequenced and analysed the complete genome sequences of multiple *B. hinzii*-like isolates, obtained from vendor-supplied C57BL/6 mice in animal research facilities on different continents, and we determined their taxonomic relationship to other *Bordetella* species. The whole-genome based and 16S rRNA gene based phylogenies each identified two separate clades in *B. hinzii*, one was composed of strains isolated from poultry, humans and a rabbit whereas the other clade was restricted to isolates from mice. Distinctly different estimated DNA–DNA hybridization values, average nucleotide identity scores, gene content, metabolic profiles and host specificity all provide compelling evidence for delineation of the two species, *B. hinzii* – from poultry, humans and rabbit – and *Bordetella pseudohinzii* sp. nov. type strain B-296-03T (=NRRL B-59942T=NCTC 13808T) that infect mice.

†These authors contributed equally to this work.
‡Present address: MIT-Broad Foundry, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
§Present address: Society for Women’s Health Research, Washington, DC, USA.
¶Present address: Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.

Abbreviations: ANI, average nucleotide identity; DDH, DNA–DNA hybridization.

The [GenBank/EMBL/DDJB/PIR] accession numbers for the Whole Genome Shotgun sequences of *Bordetella hinzii* strain LMG 13501T, *Bordetella pseudohinzii* strain B-296-03T, *Bordetella pseudohinzii* strain CWR-1 and *Bordetella pseudohinzii* strain 228/11 are LRJJ00000000, JHEP00000000, LRSQ00000000 and LRSPP00000000, respectively. The versions described in this paper are versions LRJJ01000000, JHEP02000000, LRSQ01000000 and LRSPP01000000.

Two supplementary figures and three supplementary tables are available with the online Supplementary Material.
Bordetella species have historically been subdivided into the ‘classical’ bordetellae represented by the respiratory pathogens Bordetella bronchiseptica, Bordetella pertussis, Bordetella parapertussis and six less extensively studied species (Goodnow, 1980; Matteo & Cherry, 2005; Diavatopoulos et al., 2005). The latter, ‘non-classical’ bordetellae, include Bordetella hinzii (Vandamme et al., 1995), Bordetella holmesii (Weyant et al., 1995), Bordetella petrii (von Wintzingerode et al., 2001), Bordetella avium (Kersters et al., 1984), Bordetella trematunum (Vandamme et al., 1996) and ‘Bordetella ansorpii’ (Ko et al., 2005), in addition to the recently proposed species Bordetella sputigena, Bordetella bronchialis and Bordetella flabiliis from human (Vandamme et al., 2015) and Bordetella muralis, Bordetella tumdai and Bordetella tumnukola from environmental samples (Tazato et al., 2015). Unlike the classical bordetellae, which infect and cause disease of the respiratory tract of their natural hosts, the non-classical species are associated with a wide range of disease presentations. For example, while B. holmesii and B. avium cause respiratory disease, B. trematunum and ‘B. ansorpii’ have been isolated from wound infection. B. hinzii is known to cause respiratory disease in poultry (Vandamme et al., 1995; Register & Kunkle, 2009) and has been associated with infections in immunocompromised humans, including bacteremia (Cookson et al., 1994), septicemia (Kattar et al., 2000), respiratory disease (Spilker et al., 2008; Funke et al., 1996) and chronic cholangitis (Arvand et al., 2004). In addition to infecting poultry and humans, there are several reports of B. hinzii infections in laboratory-raised mice. One report describes a spontaneous infection of specific-pathogen-free mice (C57BL/6) with Bordetella sp. (Garhart, 2002) that was later identified as B. hinzii (Garhart, 2002). Isolation of an organism identified as B. hinzii from a laboratory mouse with bronchopneumonia in Japan (Hayashimoto et al., 2008) led to an assessment of this organism’s prevalence in multiple Japanese animal facilities that identified 195 isolates from 44 different facilities (Hayashimoto et al., 2012). Further studies reported isolation of B. hinzii-like organisms from a mouse that was imported from Australia to an animal research facility in Germany (Benga et al., 2014), from lungs of a mouse in the USA (Spilker et al., 2014) and from a mouse at an animal facility in Malaysia (Loong et al., 2016). In addition to laboratory mice, B. hinzii-like bacteria were also found in a wild Tanezumi rat, the most common rodent in Southeast Asia (Jiyipong et al., 2013). Oropharyngeal isolates from vendor-supplied C57BL/6 mice at a different animal facility in the USA also tested positive for an organism initially identified as B. hinzii but revealed evidence that it might be distinct from this species in important ways (Ivanov et al., 2015). We sequenced the genomes of B. hinzii type strain LMG 13501t and of three strains isolated from mice. Each sample was sequenced to at least 75-fold coverage on an Illumina MiSeq, the reads were assembled using Newbler 2.8 or SPAdes v 3.1.1 and the resulting number of contigs per isolate ranged from 48 to 93. We reconstructed a whole-genome phylogeny as previously described (Park et al., 2012), processing the genomes into sets of overlapping 54 bp sequences that were subsequently mapped onto the reference genome of B. bronchiseptica strain RB50 (complete genome accession BX470250.1), using SSAHA2 v. 2.5.4 (Ning, 2001). The resulting alignments were analysed with the maximum-likelihood algorithm implemented in RaxML v. 7.0.4. (Stamatakis, 2006) with the general time-reversible model for nucleotide substitution with gamma-distributed rates of heterogeneity (GTRGAMMA), and the final tree was visualized with FigTree v. 1.4 (http://tree.bio.ed.ac.uk/software/figtree/).

The whole-genome phylogeny is based on all Bordetella species that have currently been sequenced, namely the classical bordetellae B. bronchiseptica, B. parapertussis and B. pertussis and the more recently described, non-classical species B. hinzii, B. holmesii, B. avium, B. trematunum and B. petrii (Tables 1 and S1, available in the online Supplementary Material). While the closely related classical bordetellae form a tight clade, the genome sequences of other classified species cluster in distinctly separate branches of the tree and appear to be monophyletic with limited intra-species sequence diversity (Fig. 1a). However, genomes of B. hinzii separate into two clades, one consisting of a single strain each isolated from mice at Case Western Reserve University in Cleveland, OH, USA (strain CWR-1), at Washington University in St. Louis, MO, USA (strain 8-296-03t) or at the Heinrich Heine University in Düsseldorf, Germany (strain 228/11). The other clade contains nine strains isolated either from poultry (strains OH87 BAL007II, CA90 BAL1384 and 4161 and the B. hinzii type strain LMG 13501t), from immunocompromised humans (strains 1277, L60, F582 and H568) or from a rabbit (strain 5132; Table 1).

Within-clade pairwise comparisons revealed 9495±3004 SNPs among the nine B. hinzii genomes with average nucleotide identity (ANI) scores of 99.53±1.28 % which were estimated using the ANI calculator (Goris et al., 2007). In contrast, the three strains isolated from mice are genetically extremely monomorphic as their genomes contain only 31±10 pairwise SNPs that result in an ANI of 100±0.11 %, Across clades, genomes differ by 116 464±265 pairwise SNPs and have an ANI of 92.89±2.86 %. To further assess the degree of delineation between the two groups of genomes, we estimated DNA–DNA hybridization (DDH) using the Genome-to-Genome Distance calculator, a tool that infers genome-to-genome distances between pairs of genomes using a BLAST-based approach (Meier-Kolthoff et al., 2013). Within-group DDH estimates are very high with 100±0.00 % among the three genomes obtained from mouse isolates and 97.52±1.65 % among the nine genomes from other sources. In contrast, between-group DDH against representative genomes of the two groups was estimated at 52.2±0.20 % (Table S2). The between-group estimates of both ANI and DDH are below the accepted thresholds for the delineation of species, 95 % for ANI (Goris et al., 2007) and 70 % for...
Table 1. Description of isolates and their genome information

<table>
<thead>
<tr>
<th>Species and strain</th>
<th>Host</th>
<th>Year of isolation</th>
<th>Country of isolation</th>
<th>Repository ID</th>
<th>Genome, GenBank ID</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. pseudohinzii</td>
<td>Mouse</td>
<td>2008</td>
<td>USA</td>
<td>NRRL B-59942T</td>
<td>JHEP00000000.2</td>
<td>Ivanov et al. (2015)</td>
</tr>
<tr>
<td>8-296-03T</td>
<td></td>
<td></td>
<td></td>
<td>NCTC 13808T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. pseudohinzii</td>
<td>Mouse</td>
<td>2002</td>
<td>USA</td>
<td>NA</td>
<td>LRSQ00000000.1</td>
<td>Garhart (2002)</td>
</tr>
<tr>
<td>CWR-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. pseudohinzii</td>
<td>Mouse</td>
<td>2011</td>
<td>Germany*</td>
<td>NA</td>
<td>LRP00000000.1</td>
<td>Benga et al. (2014)</td>
</tr>
<tr>
<td>228/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. hinzii</td>
<td>Chicken</td>
<td>1995</td>
<td>Australia</td>
<td>ATCC 51783T</td>
<td>LRJ00000000.1</td>
<td>Vandamme et al. (1995)</td>
</tr>
<tr>
<td>LMG 13501T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. hinzii</td>
<td>Turkey</td>
<td>1979 or prior</td>
<td>USA</td>
<td>NRRL B-59941</td>
<td>JHER00000000.1</td>
<td>Register & Kunkle (2009)</td>
</tr>
<tr>
<td>4161</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. hinzii</td>
<td>Turkey</td>
<td>1990</td>
<td>USA</td>
<td>NRRL B-59939</td>
<td>JHEO00000000.1</td>
<td>Register et al. (2015)</td>
</tr>
<tr>
<td>CA90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAL1384</td>
<td>Turkey/chicken</td>
<td>Unknown</td>
<td>USA</td>
<td>NRRL B-59935</td>
<td>JHEM00000000.1</td>
<td>Register et al. (2015)</td>
</tr>
<tr>
<td>B. hinzii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH87BAL007II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. hinzii</td>
<td>Human</td>
<td>1992</td>
<td>Switzerland</td>
<td>NRRL B-59938</td>
<td>JHES00000000.1</td>
<td>Funke et al. (1996)</td>
</tr>
<tr>
<td>1277</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. hinzii</td>
<td>Human</td>
<td>1994 or prior</td>
<td>USA</td>
<td>NRRL B-59936</td>
<td>JHEN00000000.1</td>
<td>Cookson et al. (1994)</td>
</tr>
<tr>
<td>L60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CP012076.1</td>
<td>Weigand et al. (2015)</td>
</tr>
<tr>
<td>B. hinzii</td>
<td>Human</td>
<td>1994</td>
<td>USA</td>
<td>NA</td>
<td>CP012077.1</td>
<td>Weigand et al. (2015)</td>
</tr>
<tr>
<td>F582</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Register & Kunkle (2009)</td>
</tr>
<tr>
<td>B. hinzii</td>
<td>Human</td>
<td>2010</td>
<td>USA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H568</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. hinzii</td>
<td>Rabbit</td>
<td>1990</td>
<td>Hungary</td>
<td>NRRL B-59940</td>
<td>JHEQ00000000.1</td>
<td>Register et al. (2015)</td>
</tr>
<tr>
<td>5132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Isolate 228/11 was recovered from a mouse that was imported from Germany to Australia.

Estimated DDH (Wayne et al., 1987), suggesting that the three isolates from mice, which substantially differ from other B. hinzii isolates, represent a novel species. Due to its close relationship with B. hinzii, we refer to the novel species as B. pseudohinzii sp. nov.

In order to further relate B. pseudohinzii sp. nov. to other bordetellae, we extracted an internal fragment of the *nrdA* gene, which was previously shown to reliably differentiate *Bordetella* species (Spilker et al., 2014), and we compared its sequence against the MLST database (pubmlst.org/bordetella/). All three B. pseudohinzii isolates carry *nrdA* allele 189 which was previously described for *Bordetella* genogroup 16 and which was found in isolate HI4681 from a mouse in the USA (Spilker et al., 2014) and isolate BH370 from a mouse in Malaysia (Loong et al., 2016). Likewise, gyrB gene sequences (GenBank accession no. AB447141) indicate that Japanese isolate 3224 (Hayashimoto et al., 2008) and 195 additional ‘*B. hinzii*’ that were cultured from tracheal swabs from mice in experimental facilities in Japan (Hayashimoto et al., 2012) may similarly prove to be *B. pseudohinzii*. Indeed, all these isolates from mice possess 16S rRNA gene sequences that are 100 % identical with that from *B. pseudohinzii* 8-296-03T which differs from the 16S rRNA gene of *B. hinzii* by two out of 1522 nucleotides (Fig. 1).

Thus, since previous reports related to the prevalence of a *Bordetella* species in mice seem likely to have confused *B. hinzii* with *B. pseudohinzii*, there is currently no compelling evidence for naturally occurring *B. hinzii* infection in mice. [Whether the *B. hinzii* isolate from a wild rat in Laos (Jiyipong et al., 2013) was accurately speciated remains to be determined.] Instead, *B. hinzii* strains originated from poultry, from immunocompromised humans and from a domesticated rabbit (Table 1). To assess whether *B. pseudohinzii* and *B. hinzii* exhibit host specificity, we evaluated colonization of mouse lungs by either *B. hinzii* (total of seven strains) or *B. pseudohinzii* (two strains). The mouse experiments were carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, and the protocol was approved by the Institutional Animal Care and Use Committee at The Pennsylvania State University at University Park, PA (#46284 Bordetella–Host Interactions). For inoculation, 4- to 6-week-old C57BL/6J mice were lightly sedated with 5 % isoflurane (IsoFlo, Abbott Laboratories) and inoculated with 7500 c.f.u. bacteria by gently pipetting 25 μl of the inoculum onto their external nares. To quantify bacterial numbers in the lungs, mice were euthanized by CO2 inhalation 7 days after infection, and the lungs were excised. Tissues were homogenized in 1 ml PBS, serially diluted and plated on Bordet-Gengou agar, and colonies were counted after incubation at 37 °C for 2 days. While both bacterial species were able to colonize murine lungs at this time point, *B. pseudohinzii* colonized more efficiently with considerably higher bacterial numbers (Fig. 2). Moreover, colonization by *B. hinzii* was host dependent because numbers of recovered bacteria of *B. hinzii* strains isolated from poultry were on average 10-fold lower than for

Downloaded from www.microbiologyresearch.org by IP: 54.70.40.11 On: Thu, 08 Aug 2019 00:24:59
B. pseudohinzii while strains originally isolated from humans were recovered at numbers 2–3 orders of magnitude lower than those observed for B. pseudohinzii. In addition, strain 5132 – from a rabbit – that in contrast to other B. hinzii isolates failed to colonize poultry in a previous study (Register & Kunkle, 2009) did not establish colonization in mice at all (Fig. 2). These data imply that B. hinzii and B. pseudohinzii may have different natural hosts and thus occupy different ecological niches.

Using the narrative method ‘Compute Pangenome’ implemented in KBase, the DOE Systems Biology Knowledgebase (www.kbase.us), we determined clusters of orthologous gene families in B. hinzii and B. pseudohinzii genomes to analyse presence and absence of genes. The core genome of B. hinzii consists of 3776 genes shared among all nine B. hinzii genomes. Of those, 3206 genes are also present in the genomes of the three B. pseudohinzii isolates (Fig. 3) while 570 are specific to B. hinzii. B. pseudohinzii contain 390 genes not present in the genome of any B. hinzii strain, including a CRISPR-Cas system that was recently described in B. pseudohinzii strain 8-296-03T (Ivanov et al., 2015). We tested additional mouse isolates from the animal facilities at the Case Western Reserve University and Washington University, and all of them contained the CRISPR-Cas system and possessed the two characteristic SNPs in the 16S rRNA gene sequence which differentiate B. pseudohinzii from B. hinzii.

B. pseudohinzii strain 8-296-03T and B. hinzii strain OH87 BAL007II were grown overnight at 37°C in Stainer-Scholte broth (Stainer & Scholte, 1970) and stained with 2% (w/v) of uranyl acetate to take images with a FEI Tecnai Spirit BioTwin transmission electron microscope. Both B. pseudohinzii and B. hinzii appear as rod-shaped coccoliths with peritrichous, isokont flagella (Fig. S1). In flagella-mediated motility assays that were performed in Stainer-Scholte medium containing 0.4% (w/v) of agar (Akerley et al., 1992), both species

![Diagram](http://ijs.microbiologyresearch.org)
this test revealed phenotypic differences distinguishing the
sucrose, lactose, mannose, maltose and galactose. However,
unique-to-species core genes (symmetric difference).
bers correspond to core gene families in common (intersection) or
three
BAL007II; 5132; 4161; CA90 BAL1384) with core genes of
both species as
fied them, the GENIII Microbial ID test (Biolog) identified
B. avium
as
and other bordetellae (Vandamme
International Journal of Systematic and Evolutionary Microbiology
Comparative gene content analysis of
strains LMG 13501
showed swimming motility after 24 h of incubation at 37 °C.
While the API 20NE test (bioMérieux) profiled both species as
B. avium based on the score of 0000067 and thus misidenti-
ified them, the GENIII Microbial ID test (Biolog) identified
B. pseudohinzii
as
based on the score of 0000067 and thus misidenti-
tic acid (Fig. S2a). In contrast, utilization of D-galactonic acid-γ-
lactone was positive for B. hinzii isolates and negative for
B. pseudohinzii (Fig. S2b). Interestingly, B. hinzii genomes
contain a cluster of five genes that are predicted to encode a
D-galactonate transcriptional regulator, a 2-dehydro-3-deoxy-
galactonokinase, a 2-dehydro-3-deoxy-6-phosphogalactonate
aldolase, a D-galactonate dehydratase and a D-galactonate
MFS transporter [the (GenBank/EMBL/DDJB) locus tag
numbers are AXA74_RS01375–AXA74_RS01395], gene prod-
ucts that are presumably involved in the utilization of galac-
tonic acid (Fig. S2c). Presence of these genes in genomes of
B. hinzii but not B. pseudohinzii may explain this metabolic
difference.

We overlaid bacterial cultures on Bordet-Gengou blood plate
antibiotic-containing strips (E-test; bioMérieux) and scored
antibiotic resistance after incubation at 37 °C for 24 h (Table S3).
In accordance with a previous analysis (Funke
et al., 1996), B. hinzii strains appeared as a multidrug resistant,
showing resistance against four of six tested antibiotics (strepto-
tomycin, ampicillin, kanamycin and chloramphenicol), but
were susceptible to tetracycline and showed intermediate
resistance to gentamicin. The only tested B. pseudohinzii
strain 8-296-03T showed a similar broad-range resistance
(Table S3). In addition, the antimicrobial sensitivity of isolate
BH470 from a mouse in Malaysia (Loong
et al., 2016), which
likely belongs to B. pseudohinzii based on the 16S rRNA and
nrpA gene sequences, was also similar to that observed in
B. hinzii from human infection (Funke
et al., 1996; Fry
et al., 2007). Thus, similar to B. hinzii, B. pseudohinzii as a species
may be multidrug resistant, with possible differences between
individual strains, suggesting antimicrobial resistance as a trait
of the last common ancestor of both species.

Respiratory quinones were analysed by a modification of
the procedure described by Reddy
et al. (2007). The HPLC
analysis of extracted lipoquinones showed a single peak with
an elution time and absorbance spectrum consistent with ubiquinone 8 (Q8), as seen in other Bordetella species
(Tazato
et al., 2015).

Description of Bordetella pseudohinzii
sp. nov.

Bordetella pseudohinzii (pseu.do.hin’zi.i Gr. prep. pseudes
false; N.L. gen. n. hinzii of Hinz; N.L. gen. n. pseudohinzii,
resembling B. hinzii). Cells are Gram-stain negative, catalase
and oxidase positive and motile bacilli with rounded ends
that occur as single units. After 48 h of incubation on
Bordet-Gengou agar at 37 °C, colonies are translucent and
non-pigmented, with smooth margins, and 1.0–1.5 mm in
diameter. Isolates grow in the presence of 4.0% NaCl, do
not show haemolysis on sheep blood agar, utilize D-tartaric
acid as a carbon source but do not assimilate D-galactonic
acid-γ-lactone. Their genomes contain a transcriptionally
active type II-C CRISPR-Cas system that is not present in

![Fig. 2. Colonization of murine lungs with either B. pseudohinzii or B. hinzii 7 days after intranasal inoculation. The dashed line is the limit of detection. The hosts of origin for the B. hinzii isolates tested are indicated by H (human), R (rabbit) and P (poultry). B. pseudohinzii isolates originated from mouse (M).](image)

![Fig. 3. Comparative gene content analysis of B. pseudohinzii and B. hinzii genomes. Venn diagram compares core genes of nine B. hinzii strains (LMG 13501T; F582; H568; 1277; L60; OH87 BAL007II; 5132; 4161; CA90 BAL1384) with core genes of three B. pseudohinzii strains (8-296-03T; 228/11; CWR-1). Numbers correspond to core gene families in common (intersection) or unique-to-species core genes (symmetric difference).](image)
any other *Bordetella* species sequenced to date. The major respiratory quinone is Q8.

Similar to *B. hinzii*, *B. pseudohinzii* utilizes pyruvate, citrate, α-ketoglutarate, succinate, malate, oxaloacetate, acetate and butyrate. However, another substrate of the TCA cycle, fumarate, appears not to be utilized by either species, presumably due to the lack of the appropriate transporters. Both species further assimilate D-/L-α-glycerophosphate, D-arabinose, D-glucosamine, D-ribono-1,4-lactone, D-ribose, D-saccharic acid, D-xylene, L-arabinose, L-lyxose, mono- and disaccharides, sucrose, L-α-mannose, L-galactose, D-glutamic acid, glycyl-L-α-glycerolphosphate, D-galactoside, methyl D-α-galactoside, chondroitin sulfate C, 2,3-butanediol, D-glucuronic acid, D-glucosamine, D-glucosamine, D-glucosamine, D-glucosamine, D-glucosamine, D-glucosamine, D-glucosamine, D-glucosaminic acid, mannitol, melezitose, melibiose, psicofuran, sorbitol, tagatose, trehalose, dulcitol, fructose 6-phosphate, gentiobiose, glucose 1-phosphate, glucose 6-phosphate, glycerol, erythritol, inulin, lactitol, lactulose, laminarin, rhamnose, sorbose, maltitol, maltotriose, mannose, 3-methyl glucose, inositol, palatinose, pectin, salicin, sedoheptulose, stachyose, turanose, xylitol, α-/β-/γ-cyclodextrin, methyl α-D-galactoside, methyl α-D-glucoside, methyl α-D-mannoside, allose, N-acetyl-D-galactosamine, N-acetyl-D-glucosamine, N-acetyl-D-glucosaminid, N-acetyl-β-D-mannosamine, methyl β-D-galactoside, methyl β-D-glucoside, methyl β-D-xyllose, 2-deoxyribose, 3-hydroxy 2-butanone, acetamide, arbutin, octopamine, D-lactic acid methyl ester, glucuronamide, sec-butylamine, 2-aminoethanol, 2-hydroxy benzoic acid, 4-hydroxy benzoic acid, bromo succinic acid, capric acid, caproic acid, citraconic acid, citramalic acid, D-glucuronic acid, glycolic acid, glyoxylic acid, malonic acid, melibionic acid, mucic acid, N-acetyl-neuraminic acid, oxalic acid, propionic acid, quinic acid, sebacic acid, α-keto valeric acid, methyl β-D-glucuronic acid, γ-amino butyric acid, γ-hydroxy butyric acid, δ-amino valeric acid, amygdalin, D-/L-carnitine, D-serine, D-threonine, gelatin, glycine, hydroxy-L-proline, L-arginine, L-histidine, L-homoserine, L-isoleucine, L-lysine, L-methionine, phenylethylamine, putrescine, tyramine, L-valine, 1,2-propanediol, 2,3-butandiol and adonitol.

The type strain, 8-296-03T (=NRRL B-59942T=NCTC 13808T), was isolated from an oropharyngeal swab of a C57BL/6 laboratory mouse in the USA in 2008. The DNA G+C content of the type strain is 66.6 mol%. Additional strains have been isolated from laboratory mice in USA (strains CWR-1 and HI4681), in Germany (strain 228-11), in Japan (strain 3224) and in Malaysia (strain BH370).

**Table 2. Differential biochemical characteristics of the novel species **

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>B. pseudohinzii (strains CWR-1, HI4681, C57BL/6)</th>
<th>B. hinzii LMG 13301T</th>
<th>B. avium ATCC 35086T</th>
<th>B. bronciseptica ATCC 193195T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urease activity</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Oxidase activity</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Haemolysis on sheep</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>blood agar</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Nitrite reduction</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Assimilation of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Glucose</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>L-Malate</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>D-Ribose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>D-Xylose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>L-Alanine</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>D-Tartaric acid</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>D-Galactonic acid-γ-lactone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>API 20NE profile</td>
<td>0000067</td>
<td>0000067</td>
<td>0000067†</td>
<td>0000067*</td>
</tr>
</tbody>
</table>

B. pseudohinzii sp. nov.

*Previously published data adopted from Kersters et al. (1984) and Vandamme et al. (1995).†According to Vandamme et al. (1995), the majority of *B. hinzii* strains have profile 0000077 and only few strains have profile 0000067.

Acknowledgements

We would like to thank Laurentiu Benga from the Heinrich Heine University in Dusseldorf, Germany, for providing genomic DNA from *B. pseudohinzii* strain 228/11 and Christine Garhart, University of Missouri St. Louis, for the gift of *Bordetella* isolates from mice. We acknowledge genome sequencing of strains LMG13301T, CWR-1 and 228/11 by the Penn State Sequencing Core facility. We thank Subhashinie Kariyawasam and Dona Wijetunge from the Penn State Animal Diagnostic Laboratory for the API20 NE test. We acknowledge the excellent technical assistance provided by William Boatwright, at the National Animal Disease Center. We thank Bernhard Schink, Aharon Oren and George Garrity for...
taxonomic nomenclature advice. The study was supported by National Institutes of Health grants GM083113, AI107016, AI111618 and GM113681 (to E.T.H.). This project was also funded, in part, by the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under contract no. HHSN272200900007C. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture or Pennsylvania State University.

References

