Reclassification of *Ruminococcus obeum* as *Blautia obeum* comb. nov.

Paul A. Lawson¹ and Sydney M. Finegold²,³,⁴

¹Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
²Infectious Diseases Section VA Medical Center West Los Angeles, Los Angeles, CA, USA
³Department of Medicine, UCLA School of Medicine, Los Angeles, CA, USA
⁴Department of Microbiology, Immunology and Molecular Genetics, UCLA School of Medicine, Los Angeles, CA

During our previous studies we reclassified *Clostridium cocoides* and a number of misclassified ruminococci into a novel genus *Blautia* within the family *Lachnospiraceae*. However, the Rules of the Bacteriological Code currently require that the types of all species and subspecies with new names (including new combinations) be deposited in two different collections in two different countries. The type strain of *Ruminococcus obeum* was, at that period in time, only deposited in the American Type Culture Collection (ATCC) and a second independent deposit, as required by the Code, was not available. Consequently, the transfer of this species to the genus *Blautia* could not be made, because the resulting species name would not conform to the Rules governing the valid publication of species names and deposit of type material (Rules 27 and 30) and consequently would not be considered to be validly published. This resulted in a nomenclatural and taxonomic anomaly with *R. obeum* being phylogenetically placed among members of the genus *Blautia* with 16S rRNA gene sequence similarities of between 91.8 and 96.6 %. In order to rectify this unsatisfactory situation, through our discussions with the ATCC, the deposit of strain *R. obeum* ATCC 29174⁴ to the DSMZ as strain number DSM 25238⁴ was completed. Hence, the transfer of *R. obeum* to the genus *Blautia* as *Blautia obeum* comb. nov. is now proposed. The type strain is ATCC 29174⁴ (=DSM 25238⁴=KCTC 15206⁴).

A number of studies have shown that the genus *Ruminococcus* is not monophyletic and is phylogenetically heterogeneous (Rainey & Janssen, 1995; Willems & Collins, 1995). The type species, *Ruminococcus flavefaciens* along with *Ruminococcus albus*, *Ruminococcus callidus* and *Ruminococcus bromii* belong to the family Ruminococcaceae (formally designated clostridial rRNA cluster IV; Collins et al., 1994). The remainder of the species are phylogenetically removed and belong to the family Lachnospiraceae (formally known as rRNA cluster XIVa; Collins et al., 1994). In our previous studies, on the basis of a polyphasic taxonomic investigation, we proposed that *Clostridium cocoides*, *Ruminococcus hansenii*, *Ruminococcus hydrogenotrophicus*, *Ruminococcus lutii*, *Ruminococcus productus* and *Ruminococcus schinkii* be transferred to a novel genus as *Blautia cocoides* comb. nov., *Blautia hansenii* comb. nov., *Blautia hydrogenotrophica* comb. nov., *Blautia lutii* comb. nov., *Blautia producta* comb. nov. and *Blautia schinkii* comb. nov. (Liu et al., 2008). The Rules of the Bacteriological Code require that the types of all species and subspecies with new names (including new combinations) be deposited in two different collections in two different countries. However, the type strain of *Ruminococcus obeum* was, at that period in time, only deposited in the American Type Culture Collection as ATCC 29174⁴ and a second independent deposit, as required by the Code, was unable to be arranged. Consequently, the transfer of this species to the genus *Blautia* could not be made, because the resulting species name would not conform to the Rules governing the valid publication of species names and deposit of type material (Rules 27 and 30) and consequently would not be considered to be validly published. This situation resulted in a nomenclatural anomaly with *R. obeum* placed among members of the genus *Blautia*. Recently, Park et al. (2012, 2013) described two additional species, *Blautia stercoris* and *Blautia faecis*, with the authors highlighting the aforementioned nomenclatural and taxonomic inconsistency. Through continued discussions with the American Type Culture Collection, the deposit of strain *R. obeum* ATCC 29174⁴ to DSMZ as strain number DSM 25238⁴ was finally completed. Therefore, the transfer of *R. obeum* to the genus *Blautia* as *Blautia obeum* comb. nov. is now proposed. The type strain is ATCC 29174⁴ (=DSM 25238⁴).

The 16S rRNA gene sequence of *R. obeum* ATCC 29174⁴ was used to search for its nearest neighbours using the EzTaxon-e server (http://eztaxon-e.ezbiocloud.net/; Kim
et al., 2012). These sequences and those of other related strains were then aligned using the program CLUSTAL W (Thompson et al., 1994) via the MEGA 6 program (Tamura et al., 2013). Phylogenetic reconstructions were performed in MEGA 6 (Tamura et al., 2013) using the neighbour-joining method using evolutionary genetic distances that had been calculated by the Kimura two-parameter model (Kimura, 1980). The phylogenetic analysis confirmed the position of R. obeum within the genus Blautia (16S rRNA gene sequence similarity values of 91.8–96.6 %). The closest relatives were B. faecis (96.5 %), Blautia glucerasea (95.9 %) and B. luti (96.6 %) (Fig. 1). It is pertinent to note that the branching node for members of the genus as a whole was not supported by a significant bootstrap value; this may suggest that a restructuring of the genus may be required at some future date.

Fig. 1. Phylogenetic tree showing the phylogenetic inter-relationships of Blautia obeum comb. nov. with members of the genus Blautia and some close relatives within the family Lachnospiraceae. The tree was reconstructed using the neighbour-joining method based on the pairwise comparison of approximately 1340 nt. Clostridium butyricum was used as the outgroup. Bar, 1 % sequence divergence. Major branching orders and bootstrap values (>85 %) expressed as a percentage of 1000 replications, are given at branching points.
Table 1. Biochemical characteristics of members of the genus *Blautia* and *R. obeum*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fermentation of:</td>
<td></td>
</tr>
<tr>
<td>Arabinose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cellobiose</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>d</td>
</tr>
<tr>
<td>Lactose</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mannose</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Maltose</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mannitol</td>
<td>−</td>
<td>w/</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>d</td>
</tr>
<tr>
<td>Raffinose</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sucrose</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>d</td>
</tr>
<tr>
<td>Xylose</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>w</td>
</tr>
<tr>
<td>α-Arabinosidase</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>−</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>α-Fucosidase</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>ND</td>
<td>−</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>α-Mannosidase</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
<td>+</td>
<td>−</td>
<td>ND</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td>+</td>
<td>−</td>
<td>W</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>N-Acetyl-β-glucosaminidase</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Major fatty acids (>10%)</td>
<td>C<sub>16:0</sub> DMA; C<sub>18:1</sub> cis<sub>9</sub></td>
<td>C<sub>14:0</sub>; FAME</td>
<td>C<sub>12:0</sub> DMA; C<sub>16:0</sub> DMA; C<sub>16:0</sub> cis<sub>9</sub></td>
<td>C<sub>14:0</sub>; ND</td>
<td>ND</td>
<td>C<sub>14:0</sub>; C<sub>16:0</sub>; C<sub>16:0</sub> DMA; C<sub>16:0</sub> ALDE; C<sub>16:0</sub> DMA</td>
<td>C<sub>14:0</sub>; C<sub>16:0</sub> DMA</td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>40–41</td>
<td>44.3</td>
<td>41.6</td>
<td>40.7</td>
<td>44–45</td>
<td>45</td>
<td>43.3</td>
<td>44–45</td>
<td>46–47</td>
<td>35.6</td>
<td>ND</td>
</tr>
<tr>
<td>Source</td>
<td>Human faeces</td>
<td>Mouse faeces</td>
<td>Human faeces</td>
<td>Dog faeces</td>
<td>Human faeces</td>
</tr>
</tbody>
</table>

A, acetic acid; L, lactic acid; S, succinic acid; E, ethanol.
In addition to our own studies, Bae and colleagues have
described two additional species of the genus Blautia (B.
faecis and B. stercoris) and during the course of these
investigations have performed additional biochemical and
chemotaxonomic analyses on R. obeum (Park et al., 2012,
2013). For cellular fatty acid analysis, biomass was collected
from cells grown for 3 days on peptone-yeast-extract glucose
(PYG) (Anaerobe Systems, CA) and extracted and analysed
using the Sherlock Microbial Identification System (MIDI).
The fatty acid profile included C12 : 0 (0.6 %), C14 : 0 (8.3 %),
C14 : 1 DMA (2.6 %), C14 : 0 DMA (8.3 %), C16 : 0 ALDE
(3.8 %), C15 : 0 (0.3 %), C16 : 1 cis 7 DMA (0.1 %), C16 : 1 cis 9 (1.9 %),
C16 : 0 (9.2 %), C16 : 1 cis 7 DMA (7.8 %), C16 : 0 DMA (10.7 %),
C18 : 0 ALDE (1.4 %), C18 : 1 cis 9 (6.5 %), C18 : 0 (1.5 %),
C18 : 1 cis 9 DMA (9.2 %), C18 : 1 cis 11 DMA (13.2 %) and
C18 : 0 DMA (2.5 %). In addition small amounts of fatty acids
were found in summed feature 1 (C13 : 0 cis 12 and/or
C14 : 0 ALDE; 1.4 %), summed feature 4 (unknown 14.762 and/or
C15 : 2 DMA; 0.6 %), summed feature 6 (C15 : 0 anteiso 3-OH and/or
unknown 17.834; 2.9 %). The results of the API (bioMérieux)
Rapid ID 32A, ZYM and 50CH test systems are given in the
species description (Park et al., 2013).

In an earlier study, uncultured bacteria represented by
sequences derived from faecal 16S rRNA gene clone libraries
were found to be closely related to R. obeum (Suau et al.,
1999). Zoetendal and colleagues (2002) followed up on these
studies using a combination of fluorescent in situ
hybridization and flow cytometry; several probes, one of which
was designated Urobe63, were specific for these R. obeum-like
sequences. Their data demonstrated that approximately 16 %
of the total community belonged to the cluster XIVa (C.
cocoides group) and of this 2.5 % belonged specifically to the
R. obeum-like organisms; although this value varied between
1 and 6 % between individuals it demonstrated that R. obeum
comprises a significant fraction of the faecal community. In
addition, a recent publication by the Gordon Laboratory has
shown that in Vibrio cholerae-associated acute diarrhoea
(cholera) R. obeum is amongst a number of taxa that
are significantly increased during the recovery phase in
Bangladeshi children (Hsiao et al., 2014). The investigation
demonstrated that R. obeum restricts V. cholerae colonization
and future studies using gnotobiotic mice and newly isolated
R. obeum strains will be conducted to elucidate the precise
mechanisms involved. Therefore, with the increasing number
of reports pertaining to the gastrointestinal microbiome
demonstrating the presence of R. obeum, it is important that
the transfer of R. obeum to the genus Blautia is completed, so
enabling the correct nomenclature to be used avoiding future
confusion.

Now that the Rules of the Bacteriological Code that
currently require that the types of all species and subspecies
with new names (including new combinations) be deposited
in two different collections in two different countries is
fulfilled, we propose the transfer of R. obeum to the genus
Blautia as Blautia obeum comb. nov. The type strain is ATCC
29174T (=DSM 25238T). The characteristics that distinguish
R. obeum from other members of the genus Blautia are
summarized in Table 1.

Description of Blautia obeum comb. nov.

Blautia obeum (o’be.um. Gr. n. *obeum* egg, referring to the
ovoid shape of the cells).

Basonym: *Ruminococcus obeum* Moore, W. E. C., Johnson,

In addition to the description given by Moore et al. (1976),
using the API Rapid ID 32A kit positive reactions are
observed for *α*-galactosidase and *β*-galactosidase. A weakly
positive reaction is given with *α*-arabinosidase. No activity
is detected for *N*-acyetyl-*β*-glucosaminidase, alkaline
phosphatase, arginine dihydrolase, *α*-fucosidase, *β*-galactosidase
6-phosphatase, glutamic acid decarboxylase, glycine arylami-
dase, leucine arylamidase, mannosse arylamidase, raffinose
arylamidase or serine arylamidase. Using the API ZYM kit,
positive reactions are obtained with acid phosphatase, alkaline
phosphatase, *α*-galactosidase, *β*-galactosidase, *α*-glucosidase
and naphthol-AS-BI-phosphohydrolase. Negative reactions
are obtained with *N*-acyetyl-*β*-glucosaminidase, *β*-glucosidase
and *α*-fucosidase. With the CH50 fermentation kit, positive
reactions are observed for *d*-arabinose, methyl *β*-D-xyloside,
methyl *β*-D-glucose, *N*-acyetyl-*β*-glucosamine, arbutin, sali-
in, *L*-fucose and turanose. The predominant fatty acids are
C16 : 0 DMA and C18 : 1 cis 11 DMA but
C14 : 0, C16 : 0, C16 : 1 cis 9 DMA and C18 : 1 cis 9 DMA are also
found in significant amounts.

Isolated from human faeces. The type strain is ATCC
29174T (=DSM 25238T =KCTC 15206T).

Acknowledgements

We wish to thank Dr Tim B. Lilburn of the American Type Culture
Collection for the deposit of *R. obeum* ATCC 29174 to the DSMZ –
Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH,
Germany.

References

Bernalier, A., Willems, A., Leclerc, M., Rochet, V. & Collins, M. D.
(1996). *Ruminococcus hydrogenotrophicus* sp. nov., a new H2/CO2-
utilizing aceticogenic bacterium isolated from human faeces. *Arch
Microbiol* 166, 176–183.

Collins, M. D., Lawson, P. A., Willems, A., Cordoba, J. J., Fernandez-
The phylogeny of the genus *Clostridium*: proposal of five new genera

16S ribosomal DNA sequences of anaerobic cocci and proposal of
Ruminococcus hansenii comb. nov. and *Ruminococcus productus* comb.

cocci. In *The Prokaryotes*, vol. 6, pp. 795–808. Edited by M. Dworkin,

