Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium

Maria del Carmen Montero-Calasanz,1,2 Markus Göker,1 Manfred Rohde,3 Cathrin Spröer,1 Peter Schumann,1 Hans-Jürgen Busse,4 Michael Schmid,5 Brian J. Tindall,1 Hans-Peter Klenk1 and Maria Camacho2

1Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
2IFAPA-Instituto de Investigación y Formación Agraria y Pesquera, Centro Las Torres-Tomejil, Ctra. Sevilla-Cazalla de la Sierra, Km 12,2, 41200 Alcalá del Río, Sevilla, Spain
3HZI – Helmholtz Centre for Infection Research Inhoffenstraße 7, 38124 Braunschweig, Germany
4Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, A-1210 Wien, Austria
5Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany

A novel non-motile, Gram-staining-negative, yellow-pigmented bacterium, designated AG13T, isolated from a rain water pond at a plant nursery in Spain and characterized as a plant-growth-promoting bacterium, was investigated to determine its taxonomic status. The isolate grew best over a temperature range of 15–40 °C, at pH 5.0–8.0 and with 0–4 % (w/v) NaCl. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Chryseobacterium. The DNA G+C content of the novel strain was 37.2 mol%. The strain had a polyamine pattern with sym-homospermidine as the major compound and produced flexirubin-type pigments. MK-6 was the dominant menaquinone and the major cellular fatty acids were iso-C15:0, C17:1o9c and iso-C17:0 3-OH. The main polar lipids were phosphatidylethanolamine, aminolipids and several unidentified lipids. The 16S rRNA gene showed 92.0–97.2 % sequence similarity with those of the members of the genus Chryseobacterium. Based on chemotaxonomic and phenotypic traits, and DNA–DNA hybridizations with the type strains of the most closely related species, the isolate is proposed to represent a novel species, Chryseobacterium hispalense, type strain AG13T (=DSM 25574T=CCUG 63019T). Emended descriptions of the species Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium are also provided.

The genus Chryseobacterium (Vandamme et al., 1994; Bernardet et al., 2011), whose type species is Chryseobacterium gleum (Holmes et al., 1984), is included within the family Flavobacteriaceae (emended by Bernardet et al., 2002), the main bacterial lineage in the phylum Bacteroidetes. At the time of
Chryseobacterium hispalense sp. nov.

writing, 65 species with validly published names were considered to be members of the genus *Chryseobacterium* according to the ‘List of prokaryotic names with standing in nomenclature’ (http://www.bacterio.net/c/chryseobacterium.html). Members of the genus *Chryseobacterium* can be found in a wide variety of environments, including freshwater (Strahan et al., 2011), soil (Li & Zhu, 2012), rhizosphere (Cho et al., 2010), phyllosphere (Behrendt et al., 2007), sludge (Pires et al., 2010), fish (Zamora et al., 2012a, b, c), midgut of insects (Kämpfer et al., 2010a), raw dairy products (Hantsis-Zacharov et al., 2008), raw chicken (de Beer et al., 2005), faeces of millipedes (Kämpfer et al., 2010b), industrial plants (Herzog et al., 2008) and clinical samples (Holmes et al., 1984).

Based on previous studies, members of the genus *Chryseobacterium* are considered to be an important bacterial group associated with plants (Lee et al., 2006; Brown et al., 2012; Anderson & Habiger, 2012) and currently there is enough evidence to show that strains of plant-associated species of the genus *Chryseobacterium* exhibit plant-growth-promoting activities (Shin et al., 2007; Dardanelli et al., 2010).

During the optimization of alternative systems to produce organically grown olive plants by using plant-growth-promoting bacteria in a commercial nursery located in Burguillos, Seville, Spain (37°34′38.1714″N 5°58′18.5592″W), in 2006, it was found that the percentage of rooted cuttings in the negative control (treated with water from a rainwater pond) was similar to the percentage of rooted cuttings in the positive control (treated with indolbutyric acid, IBA) (unpublished data). This observation suggested the existence of some microorganism in the rainwater pond that helped to root olive cuttings. This study, based on a polyphasic approach, describes the taxonomic position of a plant-growth-promoting bacterial strain, representing a novel species within the genus *Chryseobacterium*, isolated from a rainwater pond.

Filtered water samples (>0.55 mm particles) from the rainwater pond were serially diluted in sterile mineral buffer (Vincent, 1970) and inoculated on plate count agar (PCA; Difco) diluted to 50 % and NFb agar (Döbereiner, 1980) supplemented with cycloheximide (100 mg l⁻¹), adjusted to pH 7.0 and incubated at 28 °C for 5 days. Strain AG13T was firstly isolated on the basis of colony morphology, purified by subculturing on trypticase soy agar (TSA; Difco) diluted to 10 % and then selected by its ability to produce indole-3-acetic acid (IAA), a desirable plant-growth-promoting feature, and to promote rooting in model plants and olive cuttings (Montero-Calasanz et al., 2013). The culture was suspended in 0.5 % peptone and 15 % (w/v) glycerol for storage at −80 °C.

The colony morphology and pigmentation of strain AG13T were observed on TSA after 24 and 72 h under a binocular microscope according to the protocol of Pelczar (1957). Exponentially growing bacterial cultures were observed with an optical microscope (AxioScope A1; Zeiss) with a 100-fold magnification and phase-contrast illumination. Micrographs of bacterial cells grown in trypticase soy broth (TSB) for 48 h were taken with a field-emission scanning electron microscope (FE-SEM Merlin; Zeiss). Gram staining was performed according to the method of Halebian et al. (1981) and checked by the KOH test (Gregersen, 1978). Anaerobic growth was investigated by incubation in an anaerobic pouch (Merck) for 7 days at 28 °C on TSA. Activity of oxidase was analysed using filter-paper discs (grade 388; Sartorius) impregnated with 1 % solution of N,N,N′,N′-tetramethyl-p-phenylenediamine (Sigma–Aldrich); a positive test was indicated by the development of a blue–purple colour after applying biomass to the filter paper. Catalase activity was tested by the observation of bubbles following the addition of drops of 3 % H₂O₂. The KOH test to assess whether the pigments produced by strain AG13T were of the flexirubin type was performed according to the method of Bernardet et al. (2002).

Temperature and pH tolerance of strain AG13T were determined on plates of TSA at temperatures from 5 to 45 °C in steps of 5 °C and at pH 4.0–12.5 (in steps of 0.5 pH units) using the buffer system described by Xu et al. (2005). Degradation of specific substrates was examined using agar plates with various basal media, where results were considered to be positive by the appearance of clear zones around the colonies; casein degradation was tested on medium containing skimmed milk (5 %, w/v) and NaCl (0.5 %) solidified with 1 % agarose; tyrosine degradation was investigated as described by Gordon & Smith (1955) on plates containing peptone (0.5 %), beef extract (0.3 %), L-tyrosine (0.5 %) and agarose (1.5 %); the decomposition of xanthine and hypoxanthine was investigated by the same test, replacing L-tyrosine with hypoxanthine or xanthine (0.4 %); starch degradation was tested on plates containing nutrient broth (0.8 %), starch (1 %) and agarose (1.5 %), and developing these plates by flooding with iodine solution (1 %). Enzyme activities of strain AG13T were tested using API ZYM galleries according to the instructions of the manufacturer (bioMérieux). Other biochemical tests, such as cellulase activity (method 15.2.18), methyl red (method 15.2.52) and Voges–Proskauer reactions (method 15.2.82), were performed as described by Tindall et al. (2007). The utilization of carbon sources and acid production were determined using API 20NE and API 20E strips (bioMérieux) as well as using GEN III Microplates in an Omnilog device (Biolog). The GEN III Microplates were inoculated with a cell suspension made in a ‘gelling’ inoculating fluid (IF) at a cell density of 90 % transmittance, yielding a running time of 4 days in phenotype microarray mode at 28 °C. The exported data were further analysed with the opm package for R (Vaas et al., 2012) v.0.9.23, using its functionality for merging subsequent measurements of the same plate, statistically estimating parameters from the respiration curves such as the maximum height and automatically ‘discretizing’ these values into negative and positive reactions. Comparison of strain AG13T with the reference strains *Chryseobacterium defluvii* DSM 14219T, *C. daecheongense* DSM 15235T, *C. gleum* DSM 16776T, *C. taiwanensis* JCM 21767T, *C. gregarium* DSM 19109T, *C. indolgenes* DSM 16777T, *C. gambrini...
DSM 18014^T, C. wanjuense DSM 17724^T, C. joostel DSM 16927^T, C. vrystaatense DSM 25206^T, C. luteum DSM 18605^T, C. shigense DSM 17126^T, C. jejuni DSM 19299^T and C. ureilyticum DSM 18017^T was performed only in the GEN III Microplates, in two independent determinations. Reactions that gave contradictory results between the two repetitions were regarded as ambiguous.

The extraction and analysis of cellular fatty acids was carried out from biomass grown on TSA plates held at 28 °C for 24 h and harvested always from the same sector (the last quadrant streak) using the above-mentioned reference strains in parallel experiments. Analysis was conducted using the Microbial Identification System (MIDI) Sherlock version 6.1 (results evaluated against the TSBA40 peak-naming table database) as described by Sassler (1990). Polar lipids were extracted and separated by two-dimensional TLC according to the protocols of Bligh & Dyer (1959) and Tindall et al. (2007) and identified according to the method of Minnikin et al. (1984) as modified by Kroppenstedt & Goodfellow (2006) using the reference strains C. defluvii DSM 14219^T, C. gregarium DSM 19109^T, C. indologenes DSM 16777^T and C. wanjuense DSM 17724^T in parallel for comparison. Respiratory lipoquinones were extracted from freeze-dried cell material with methanol/hexane as described by Tindall (1990a, b), separated into their functional classes by TLC and analysed by reversed-phase HPLC (Tindall, 1990a, b). Polyamines were extracted as reported by Busse & Auling (1988) and analysed according to the protocol of Stolz et al. (2007) using biomass cultivated in PYE broth (0.3 % peptone from casein, 0.3 % yeast extract at pH 7.2, 28 °C with shaking at 180 r.p.m.) and harvested at 70 % of the maximum OD. The G+C content of the chromosomal DNA was determined by HPLC according to the method of Mesbah et al. (1989). Chromosomal DNA was isolated with a Wizard Genomic DNA Purification kit (Promega). The 16S rRNA gene was amplified by PCR using universal primers 27f and 1492r (Lane, 1991) at an annealing temperature of 55.5 °C. Amplified DNA fragments were cloned using a TOPO TA cloning kit 2.1 (Invitrogen). The sequencing of purified plasmid DNA was performed by using a BigDye Terminator v.3.1 cycle sequencing kit (Applied Biosystems) as directed by the manufacturer’s protocol and an ABI PRISM 3730 DNA analyser (Applied Biosystems). Sequence data were edited and assembled manually using BioEdit (sequence alignment editor) v.7.0.5 (Hall, 1999). Phylogenetic analysis was based on an alignment inferred with POA version 2.0 (Lee et al., 2002) and filtered with GBLOCKS (Castresana, 2000). Phylogenetic trees were inferred under maximum-likelihood and maximum-parsimony as optimality criteria using RAxML version 7.2.8 (Stamatakis et al., 2008) and PAUP* 4b10 (Swofford, 2002), respectively. Bootstrap support values were calculated using the stopping criterion (Pattengale et al., 2009) as implemented in RAxML and 1000 replicates in the case of PAUP*. Rooting was done using the midpoint method (Hess & De Moraes Russo, 2007) and then checked for its agreement with the classification. Pairwise similarities were calculated from exact pairwise sequence alignments using the Smith–Waterman algorithm as implemented in the EMBOSS suite (Rice et al., 2000). DNA–DNA hybridization experiments were performed in double analysis as described by De Ley et al. (1970) with the modifications suggested by Huss et al. (1983) using a Cary 100 Bio UV/VIS spectrophotometer (Agilent).

Cells of strain AG13^T were Gram-staining-negative, non-motile, (Fig. S1, available in IJSEM Online), non-sporulating and strictly aerobic. The colonies were convex, circular and translucent with a shiny, smooth and mucoid surface and entire edges. A non-diffusible yellow–orange pigment of the flexirubin type was produced. Strain AG13^T grew best at 15–40 °C; no growth was observed below 10 °C or above 40 °C. Growth was observed in the presence of 0–4 % NaCl but not 8 % NaCl and at pH 5.0–8.0. The full phenotype microarrays obtained using the OmniLog device in comparison with the type strains of other species of the genus Chryseobacterium showed strain AG13^T to be distinct from related species (Fig. S2); a summary of some differential phenotypic characteristics is presented in Table 1.

Strain AG13^T contained primarily menaquinone MK-6 (80.9 %), a feature shared by all members of the family Flavobacteriaceae (Bernardet et al., 2011), but also MK-5 (16.5 %). Polymamine analysis revealed sym-homospermidine (40.0 µmol) as a major compound, minor amounts of spermidine (4.4 µmol) and spermine (2.2 µmol) and traces of putrescine, cadaverine and 1,3-diaminopropane (≤0.1 µmol), which is consistent with the characteristic pattern for species of the genus Chryseobacterium (Hamana & Matsuzaki, 1990, 1991; Kämpfer et al., 2003). The polar lipid profile of strain AG13^T consisted of the predominant compounds phosphatidylethanolamine (PE), two unknown lipids (L6 and L8) and two unknown aminolipids (AL1 and AL2) with Rf values documented in Fig. 1. Furthermore, moderate amounts of an unknown lipid L1 and an aminolipid AL3 and minor amounts of three unknown lipids (L3, L4 and L10) and an aminolipid (AL4) were detected. This is in accordance with chromatographic profiles observed for reference strains in this study and those of Kämpfer et al. (2003, 2009) and Herzog et al. (2008), although it is worthy of note that in the original description of C. defluvii an unknown aminophospholipid was detected that had an Rf value similar to that of the lipid labelled as L8 in this study. L8 was present in all strains tested, strongly suggesting that this lipid was not correctly identified in the original work. Hence, the species description of C. defluvii should be emended, as well as those of the species C. indologenes, C. wanjuense and C. gregarium, since these results were missing from the original descriptions. The presence of a single phospholipid (phosphatidylethanolamine) and absence of any additional phospholipids is consistent with the reports that phosphophingolipids are absent, in line with the original genus description (Vandamme et al., 1994). The major fatty acids were the saturated branched-chain acid iso-C15:0 (44.3 %), the monounsaturated iso-C17:1ω9c (24.3 %) and the hydroxylated iso-C17:0 3-OH.
The genus Chryseobacterium is characterized by its fatty acid profile, which can include iso-C15:0 2-OH and anteiso-C15:0. The presence of these fatty acids is often used to identify species within the genus. For example, the fatty acid profile of strain AG13T was investigated in this study (Table 2). It should be noted that earlier work on the fatty acid profiles of members of the genus Chryseobacterium (Yano et al., 1994) as well as the elucidation of the underlying chemical structures from which these fatty acids are derived. Similarly, some of the more recent evaluations also no longer report the presence of this fatty acid (see for example Nguyen et al., 2013; Sang et al., 2013; Zamora et al., 2012a, b, c; Li & Zhu, 2012). This has implications when one considers the presence of only iso-C17:1ω9c, but now record it as part of summed feature 9. The annotation of the iso-C17:1ω9c fatty acid differs in both earlier publications (Moss & Dees, 1978; Weyant et al., 1995) as well as the work of Herzog et al. (2008) from that given in other publications. The work of Herzog et al. (2008) implies that the correct structure should be 9Z, 15-methyl hexadecenoic acid, while the MIDI annotation implies 7Z, 15-methyl hexadecenoic acid.

The DNA G+C content of strain AG13T was 37.2 mol%. This value is consistent with those observed for species of the genus Chryseobacterium (Vandamme et al., 1994; Bernardet et al., 2011).

The almost complete (1480 bp) 16S rRNA gene sequence of strain AG13T was determined. The 16S rRNA gene sequence showed the highest similarity with those of C. daecheongense DSM 15235T (97.2 %) and C. defluvii DSM 14219T (97.1 %). Furthermore, strain AG13T and its closest relatives were placed within the same phylogenetic group by both maximum-likelihood and maximum-parsimony estimations (Fig. 2). The 16S rRNA gene sequence analysis thus leaves no doubt that the novel strain belongs to the

Table 1. Differential physiological and biochemical characteristics of strain AG13T and the type strains of closely related species of the genus Chryseobacterium

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trehalose</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cellobiose</td>
<td>+/ -</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
<td>+/-</td>
<td>+/-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sucrose</td>
<td>-</td>
<td>+/-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Turanose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
<td>+/-</td>
<td>+/-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>d-Saladin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>d-Galactose</td>
<td>+</td>
<td>+/-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+/-</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>d-Mannitol</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Glycerol</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>d-Glucose 6-phosphate</td>
<td>+</td>
<td>+/-</td>
<td>+/-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>d-Fructose 6-phosphate</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>d-Aspartic acid</td>
<td>-</td>
</tr>
<tr>
<td>L-Histidine</td>
<td>-</td>
</tr>
<tr>
<td>L-Serine</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Pectin</td>
<td>+/-</td>
<td>+</td>
<td>+/-</td>
<td>+</td>
</tr>
<tr>
<td>d-Galacturonic acid</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Glucuronamide</td>
<td>+</td>
<td>+/-</td>
<td>+/-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Quinic acid</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Methyl pyruvate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Citric acid</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>α-Ketoglutaric acid</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-Malic acid</td>
<td>-</td>
</tr>
<tr>
<td>Growth with 4% NaCl</td>
<td>+/-</td>
<td>+</td>
</tr>
</tbody>
</table>

The DNA G+C content of strain AG13T was 37.2 mol%. This value is consistent with those observed for species of the genus Chryseobacterium (Vandamme et al., 1994; Bernardet et al., 2011). The almost complete (1480 bp) 16S rRNA gene sequence of strain AG13T was determined. The 16S rRNA gene sequence showed the highest similarity with those of C. daecheongense DSM 15235T (97.2 %) and C. defluvii DSM 14219T (97.1 %). Furthermore, strain AG13T and its closest relatives were placed within the same phylogenetic group by both maximum-likelihood and maximum-parsimony estimations (Fig. 2). The 16S rRNA gene sequence analysis thus leaves no doubt that the novel strain belongs to the
genus *Chryseobacterium* and represents a distinct species. However, the degree of 16S rRNA gene sequence difference of strain AG13^T from the above-mentioned closely related strains indicated the need to prove the genomic distinctness of the type strain representing the novel species by DNA–DNA hybridization. Strain AG13^T displayed DNA–DNA relatedness of 16.9 ± 4.5% with *C. daecheongense* DSM 15235^T and 24.6 ± 3.2% with *C. defluvii* DSM 14219^T, both values being

Fig. 1. Polar lipids profiles (labelled by the Rf values) of *Chryseobacterium hispalense* sp. nov. AG13^T (a), *C. defluvii* DSM 14219^T (b), *C. indologenes* DSM 16777^T (c), *C. wanjuense* DSM 17724^T (d) and *C. gregarium* DSM 19109^T (e), after separation by two-dimensional TLC using the solvents chloroform/methanol/water (65:2:4, by vol.) in the first dimension and chloroform/methanol/acetic acid/water (80:12:15:4, by vol.) in the second dimension. Plates were sprayed with molybdatophosphoric acid (3.5%; Merck) for detection of the total polar lipids. PE, phosphatidylethanolamine; AL1–5, unknown aminolipids; L1–16, unknown lipids. All data are from this study.
Table 2. Cellular fatty acid profiles (%) of strain AG13 and closely related species of the genus Chryseobacterium

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>iso-C15:0</td>
<td>TR</td>
<td>3.1</td>
<td>1.3</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
<td>1.6</td>
<td>TR</td>
<td>1.0</td>
<td>TR</td>
<td>1.0</td>
<td>1.6</td>
<td>TR</td>
<td>TR</td>
</tr>
<tr>
<td>ECL 13.565</td>
<td>ND</td>
<td>6.4</td>
<td>6.9</td>
<td>2.8</td>
<td>4.2</td>
<td>4.8</td>
<td>5.0</td>
<td>7.8</td>
<td>9.6</td>
<td>ND</td>
<td>ND</td>
<td>7.6</td>
<td>2.9</td>
<td>ND</td>
<td>3.0</td>
</tr>
<tr>
<td>iso-C15:0</td>
<td>44.3</td>
<td>54.8</td>
<td>48.8</td>
<td>35.7</td>
<td>44.5</td>
<td>34.6</td>
<td>34.50</td>
<td>51.7</td>
<td>43.1</td>
<td>41.4</td>
<td>42.8</td>
<td>37.7</td>
<td>41.7</td>
<td>36.2</td>
<td>32.5</td>
</tr>
<tr>
<td>anteiso-C15:0</td>
<td>1.5</td>
<td>2.7</td>
<td>2.0</td>
<td>TR</td>
<td>TR</td>
<td>8.2</td>
<td>TR</td>
<td>1.3</td>
<td>TR</td>
<td>1.2</td>
<td>3.8</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
</tr>
<tr>
<td>iso-C16:0</td>
<td>ND</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
<td>ND</td>
<td>TR</td>
<td>TR</td>
<td>ND</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
<td>ND</td>
<td>TR</td>
<td>TR</td>
<td>ND</td>
</tr>
<tr>
<td>C16:0-0:0:3-OH</td>
<td>TR</td>
<td>1.3</td>
<td>1.2</td>
<td>1.3</td>
<td>TR</td>
<td>1.1</td>
<td>1.4</td>
<td>1.2</td>
<td>1.1</td>
<td>TR</td>
<td>1.1</td>
<td>1.0</td>
<td>1.4</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>iso-C15:0:3-OH</td>
<td>2.9</td>
<td>2.2</td>
<td>2.3</td>
<td>2.8</td>
<td>3.1</td>
<td>1.9</td>
<td>2.3</td>
<td>2.1</td>
<td>2.8</td>
<td>2.7</td>
<td>2.8</td>
<td>2.1</td>
<td>2.4</td>
<td>3.0</td>
<td>2.9</td>
</tr>
<tr>
<td>iso-C17:1-0:9c</td>
<td>24.3</td>
<td>5.3</td>
<td>7.9</td>
<td>23.6</td>
<td>16.2</td>
<td>21.0</td>
<td>25.5</td>
<td>8.0</td>
<td>11.4</td>
<td>23.7</td>
<td>22.4</td>
<td>21.2</td>
<td>17.8</td>
<td>23.7</td>
<td>28.2</td>
</tr>
<tr>
<td>ECL 16.582</td>
<td>ND</td>
<td>1.3</td>
<td>1.6</td>
<td>1.7</td>
<td>1.6</td>
<td>1.3</td>
<td>7</td>
<td>1.7</td>
<td>1.7</td>
<td>ND</td>
<td>ND</td>
<td>1.6</td>
<td>ND</td>
<td>1.6</td>
<td>ND</td>
</tr>
<tr>
<td>iso-C17:0:3-OH</td>
<td>TR</td>
<td>2.4</td>
<td>2.5</td>
<td>1.5</td>
<td>1.3</td>
<td>TR</td>
<td>1.0</td>
<td>2.2</td>
<td>2.2</td>
<td>1.4</td>
<td>TR</td>
<td>1.0</td>
<td>1.4</td>
<td>TR</td>
<td>TR</td>
</tr>
<tr>
<td>iso-C17:0:3-OH</td>
<td>12.1</td>
<td>10.8</td>
<td>13.3</td>
<td>15.1</td>
<td>17.1</td>
<td>12.7</td>
<td>11.5</td>
<td>13.1</td>
<td>15.6</td>
<td>15.3</td>
<td>10.6</td>
<td>16.3</td>
<td>18.3</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td>C17:0-2:OH</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
<td>ND</td>
<td>ND</td>
<td>1.7</td>
<td>TR</td>
<td>TR</td>
<td>ND</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
</tr>
<tr>
<td>Summed features</td>
<td></td>
</tr>
<tr>
<td>3 (iso-C15:0-2:OH)</td>
<td>8.9</td>
<td>6.8</td>
<td>9.5</td>
<td>11.6</td>
<td>8.4</td>
<td>10.7</td>
<td>11.3</td>
<td>8.3</td>
<td>10.9</td>
<td>9.6</td>
<td>9.2</td>
<td>7.2</td>
<td>9.9</td>
<td>11.2</td>
<td>10.2</td>
</tr>
<tr>
<td>4</td>
<td>TR</td>
<td>ND</td>
<td>ND</td>
<td>TR</td>
<td>ND</td>
<td>TR</td>
<td>ND</td>
<td>TR</td>
<td>ND</td>
<td>TR</td>
<td>ND</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
</tr>
</tbody>
</table>

*This fatty acid may be incorrectly identified (see text for details) and is recorded as 9Z, 15-methyl hexadecenoic acid for C. defluvii, C. daecheongense, C. taiwanense, C. gambrini, C. joostei and C. ureilyticum by Herzog et al. (2008).

†Summed features are groups of two or three fatty acids that are treated together for the purpose of evaluation in the MIDI system and include both peaks with discrete ECLs as well as those where the ECLs are not reported separately. Summed feature 3 is listed as iso-C15:0 2:OH/16:0 0:7c and annotated here as iso-C15:0 2:OH; summed feature 4 is listed as anteiso-C17:1 0:9c and/or iso-C17:1 1 (ii).

far below the threshold value of 70% recommended by Wayne et al. (1987) for a decision on the species status of novel strains.

Several phenotypic characteristics apart from the phylotyping analysis based on 16S rRNA gene sequences also support the distinctiveness of strain AG13 from members of all other species of the genus Chryseobacterium (Tables 1 and 2). Based on the phenotypic and genotypic data presented above, we propose that strain AG13 represents a novel species within the genus Chryseobacterium, with the name Chryseobacterium hispalense sp. nov.

Based on a review of the literature and new data obtained in this study, emended descriptions of the species C. defluvii, C. indologenes, C. wanjunense and C. gregarium are also provided. Although data are accumulating that indicate the genus description should be further emended to include the polar lipid composition, in the absence of data for all species considered to be members of the genus Chryseobacterium this would be premature. However, this does not preclude their inclusion in new species descriptions.

Emended description of Chryseobacterium defluvii Kämpfer et al. 2003

The properties are as given in the species description by Kämpfer et al. (2003) with the following emendation. In addition to phosphatidylethanolamine, the polar lipid profile contains thirteen unidentified polar lipids (ten lipids and three aminolipids, the RF values of which are documented in Fig. 1b). In contrast to the fatty acids listed by Kämpfer et al. (2003) the cellular fatty acids consist mainly of iso-C15:0, iso-C17:0 9c, iso-C15:0 2:OH and iso-C17:0 3:OH, with smaller amounts of iso-C15:0 3:OH and anteiso-C15:0. The annotation of iso-C17:0 9c may be incorrect. Phosphophingolipids are absent.

Emended description of Chryseobacterium indologenes (Yabuuchi et al. 1983) Vandamme et al. 1994

The properties are as given in the species description for Flavobacterium indologenes by Yabuuchi et al. (1983) and in the description of the genus Chryseobacterium by Vandamme et al. (1994) with the following emendation. In addition to phosphatidylethanolamine, the polar lipid profile contains 11 unidentified polar lipids (seven lipids and four aminolipids, the RF values of which are documented in Fig. 1c). Since there are contradictions in the fatty acid patterns given by Yabuuchi et al. (1983) and Vandamme et al. (1994), the cellular fatty acids consist mainly of iso-C15:0, iso-C17:0 9c, iso-C15:0 2:OH and iso-C17:0 3:OH, with smaller amounts of...
iso-C_{15:0} 3-OH and anteiso-C_{15:0}. The annotation of iso-C_{17:1ω9c} may be incorrect. Phosphosphingolipids are absent.

Emended description of *Chryseobacterium wanjuense* Weon et al. 2006

The properties are as given in the species description by Weon et al. (2006) with the following emendation. In addition to phosphatidylethanolamine, the polar lipid profile contains 12 unidentified polar lipids (eight lipids and four aminolipids, the RF values of which are documented in Fig. 1d). Cellular fatty acids consist mainly of iso-C_{15:0} iso-C_{17:1ω9c}, iso-C_{15:0} 2-OH and iso-C_{17:0} 3-OH, with smaller amounts of iso-C_{15:0} 3-OH and anteiso-C_{15:0}. The annotation of iso-C_{17:1ω9c} may be incorrect. Phosphosphingolipids are absent.

Emended description of *Chryseobacterium gregarium* Behrendt et al. 2008

The properties are as given in the species description by Behrendt et al. (2008) with the following emendation. In addition to phosphatidylethanolamine, the polar lipid profile contains 13 unidentified polar lipids (10 lipids and three aminolipids, the RF values of which are documented in Fig. 1e). The annotation of iso-C_{17:1ω9c} in the original description may be incorrect. Phosphosphingolipids are absent.

Description of *Chryseobacterium hispalense* sp. nov.

Chryseobacterium hispalense [his.pal.en’se L. neut. adj. hispalense of or belonging to the city of *Hispalis*, the
Latin name of Seville (Spain), from where the type strain was isolated.

Colonies are circular with a shiny surface and entire edges and produce a yellow to orange non-diffusible flexirubin-type pigment. Cells are Gram-staining-negative, strictly aerobic, non-spore-forming, non-motile, frequently paired rods with cell dimensions of 0.2–0.6 × 1.1–1.8 μm, catalase- and oxidase-positive, and Voges–Proskauer- and methyl red reaction-negative. In GEN III Microplates and API 20 NE and API 20E strips, dextrin, maltose, β-gentiobiose, D-glucose, D-mannose, D-fructose, D-galactose, D-fucose, L-rhamnose, sodium lactate, D-glucose 6-phosphate, D-fructose 6-phosphate, l-tryptophan, glycyrrhizinic acid, L-proline, l-arginine, turanose, l-aspartic acid, d-glucuronic acid, mucic acid, quinic acid, l-glutamic acid, pectin, D-galacturonic acid, glucuronamide, citric acid, α-ketoglutaric acid, l-malic acid, potassium tellurite, Tween 40, D-glucosamine, N-acetyl-glucosamine, d-raffinose, trehalose, melibiose, guanidine hydrochloride, D-glucosamine, N-acetyl-D-glucosamine, l-aspartic acid, D-glucuronic acid, D-glucose 6-phosphate, L-tryptophan, glycyl L-glutamic acid, DL-serine, L-histidine, L-pyroglutamic acid, L-fucose, inosine, D-sorbitol, D-mannitol, D-fucose, D-galactose, L-aspartic acid, D-glucuronic acid, mucic acid, quinic acid, L-glutamic acid, pectin, D-galacturonic acid, glucuronamide, citric acid, α-ketoglutaric acid, l-malic acid, potassium tellurite, Tween 40, D-glucosamine, N-acetyl-D-glucosamine, l-aspartic acid, D-glucuronic acid, D-glucose 6-phosphate, L-tryptophan, glycyl L-glutamic acid, DL-serine, L-histidine, L-pyroglutamic acid, L-fucose, inosine, D-sorbitol, D-mannitol, N-myoinositol, L-aspartic acid, DL-serine, l-histidine, L-pyroglutamic acid, L-galactonic acid-γ-lactone, D-saccharic acid, methyl pyruvate, D-malic acid, bromosuccinic acid, γ-amino-N-butyr acid, α-ketobutyric acid, propionic acid, sodium formate and sodium bromate are not utilized. Acid is produced from glycyrrhizinic acid, L-proline, L-arginine, L-aspartic acid and L-glutamic acid (that can be used as sole nitrogen sources), but not from guanidine hydrochloride, N-acetyl-D-glucosamine, N-acetyl-β-d-mannosamine, N-acetyl-D-galactosamine, iso-C15:0 3-OH, with smaller amounts of iso-C15:0 2-OH and iso-C17:0 3-OH, with smaller amounts of iso-C15:0 3-OH and anteiso-C17:0 3-OH. The annotation of iso-C17:1ω9c may be incorrect.

The type strain, AG13T (= DSM 25574T = CCUG 63019T), was isolated in 2006 from a rainwater pond located in a commercial olive tree nursery in Burguillos (Seville), Spain. The type strain has a genomic DNA G+C content of 37.2 mol%.

Acknowledgements

We would like to gratefully acknowledge the help of Bettina Sträubler and Birgit Grün (DSMZ, Braunschweig), for their help in DNA–DNA hybridization analysis. M. C. M.-C. is the recipient of a postdoctoral contract from European Social Fund Operational Programme (2007–2013) for Andalusia and a DSMZ postdoctoral scholarship.

References

