Micromonospora schwarzwaldensis sp. nov.,
a producer of telomycin, isolated from soil

Maria Soledad Vela Gurovic,† Sebastian Müller,2 Nicole Domin,1 Ivana Seccareccia,1 Sandor Nietzsche,4 Karin Martin3 and Markus Nett1

1Junior Research Group ‘Secondary Metabolism of Predatory Bacteria’, Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, 07745 Jena, Germany
2Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, 07745 Jena, Germany
3Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, 07745 Jena, Germany
4Centre for Electron Microscopy, University Hospital Jena, 07745 Jena, Germany

A Gram-stain-positive, spore-forming actinomycete strain (HKI0641T) was isolated from a soil sample collected in the Black Forest, Germany. During screening for antimicrobial natural products this bacterium was identified as a producer of the antibiotic telomycin. Morphological characteristics and chemotaxonomic data indicated that the strain belonged to the genus Micromonospora. The peptidoglycan of strain HKI0641T contained meso-diaminopimelic acid, and the fatty acid profile consisted predominantly of anteiso-C15:0, iso-C15:0, iso-C16:0 and C16:0. MK-10(H4), MK-10(H2) and MK-10 were identified as the major menaquinones. To determine the taxonomic positioning of strain HKI0641T, we computed a binary tanglegram of two rooted phylogenetic trees that were based upon 16S rRNA and gyrB gene sequences. The comparative analysis of the two common classification methods strongly supported the phylogenetic affiliation with the genus Micromonospora, but it also revealed discrepancies in the assignment at the level of the genomic species. 16S rRNA gene sequence analysis identified Micromonospora coxensis DSM 45161T (99.1 % sequence similarity) and Micromonospora marina DSM 45555T (99.0 %) as the nearest taxonomic neighbours, whereas the gyrB sequence of strain HKI0641T indicated a closer relationship to Micromonospora aurantiaca DSM 43813T (95.1 %). By means of DNA–DNA hybridization experiments, it was possible to resolve this issue and to clearly differentiate strain HKI0641T from other species of the genus Micromonospora. The type strains of the aforementioned species of the genus Micromonospora could be further distinguished from strain HKI0641T by several phenotypic properties, such as colony colour, NaCl tolerance and the utilization of carbon sources. The isolate was therefore assigned to a novel species of the genus Micromonospora, for which the name Micromonospora schwarzwaldensis sp. nov. is proposed. The type strain is HKI0641T (=DSM 45708T=CIP 110415T).

Micromonospora is the type genus of the family Micromonosporaceae Krasil’nikov 1938, emend. Zhi, Li and Stackebrandt 2009 within the suborder Micromonosporineae in the order Actinomycetales (Genilloud, 2012; Stackebrandt et al., 1997; Zhi et al., 2009). This family contains several genera which are morphologically distinct, but chemotaxonomically similar (Goodfellow et al., 1990). At the time of writing, the ‘List of Prokaryotic Names with Standing in Nomenclature’ includes 50 species and seven subspecies in the genus Micromonospora (Euzéby, 2012). The majority of these species have been isolated from soil, freshwater or marine habitats (Carro et al., 2012; Genilloud, 2012; Luedemann et al., 1963). Like other actinomycetes, species of the genus Micromonospora are best known for synthesizing bioactive secondary metabolites, especially aminoglycoside, enediyne and oligosaccharide antibiotics (Bédzy, 2005). Their metabolic proficiency was confirmed in whole-genome sequencing projects, which showed that these organisms
dedicate a large portion of their genetic capacity to the biosynthesis of natural products (Nett et al., 2009; Alonso-Vega et al., 2012). While the biological function of most of these molecules still remains elusive, there is mounting evidence that some of them contribute to plant health, e.g. by alleviating metal-induced oxidative stress (Dimkpa et al., 2009) or by suppressing the growth of phytopathogens (Raijmakers & Mazzola, 2012). The importance of species of the genus Micromonospora for soil ecology, including plant growth and development, has recently been recognized (Hirsch & Valdés, 2010). During a survey of potential biocontrol agents from soil in the Black Forest (Schwarzwald), 48 strains were isolated. Extracts of strain HKI0641T showed strong activities in the agar diffusion assay against various Gram-reaction-positive bacteria as well as fungi, suggesting the production of antimicrobial natural products. Here, we report a comprehensive phenotypic and phylogenetic characterization of strain HKI0641T.

The soil samples were collected in the Black Forest near Forbach, Germany, in 2000. Strain HKI0641T was isolated from the flooding zone of the Schwarzenbach dam. The corresponding sample (pH 5.5) contained significant amounts of loam, but also some plant debris. To promote the isolation of spore-forming actinomycetes, all samples were initially dried and heated for 1 h at 80 °C. Afterwards, 1 g of each sample was suspended in 10 ml 0.85 % NaCl (w/v) and mixed on a shaker for 30 min. After sedimentation of the soil particles the supernatants were diluted to 10⁻⁴, 10⁻⁵ and 10⁻⁶ with 0.85 % NaCl (w/v). Aliquots of these suspensions were spread over plates containing hemic acid-vitamin agar (Hayakawa & Nonomura, 1987) supplemented with naldixic acid (20 μg ml⁻¹) and cycloheximide (30 μg ml⁻¹). The plates were incubated at 28 °C for three weeks. All isolates were purified and maintained on yeast extract–malt extract (ISP-2) agar (Shirling & Gottlieb, 1966). Pure cultures were preserved at 28 °C as a mixture of hyphae and few spores in liquid ISP-2 medium and glycerol medium [8.8 % glycerol, 0.18 % (NH₄)₂SO₄, 0.09 % Na-citrate, 1.26 % K₂HPO₄, 0.36 % H₂PO₄ and 0.01 % MgSO₄]. Stock cultures in liquid ISP-2 medium supplemented with 5 % DMSO were additionally maintained in the vapour phase of liquid nitrogen. To identify potential producers of bioactive metabolites, the supernatants of isolated strains, grown in liquid ISP-2 medium for 7 days, were subjected to an agar diffusion assay as previously described (Nett & Hertweck, 2011). Based upon the antimicrobial effects in this primary screening, strain HKI0641T was selected for further taxonomic analysis.

Genomic DNA as template for PCR was extracted using the DNeasy Blood and Tissue kit (Qiagen). PCR amplification of the 16S rRNA gene was performed using primers Fw-16S (5’-GTCTCTGGCGCCGATCTGACGC-3’) and Rev-16S (5’-CGGCTACCTTGTACGACCTTGC-3’). The sequencing of the gyrB gene was performed as described by Garcia et al. (2010). 16S rRNA gene and gyrB sequences of strain HKI0641T served as probes to search for similar sequences using the BLASTN module of EpoS (Griebel et al., 2008). Representative sequences were manually selected (Table S1 available in IJSEM Online) and aligned with the CLUSTAL W module of EpoS using default parameters. This approach resulted in a multiple alignment of 1413 and 1032 sites after removing all gap columns. The alignments were subsequently used to compute sequence similarities using the R-package APE (Paradis et al., 2004) as well as the phylogenetic trees employing the neighbour-joining (NJ) module of EpoS based on the Kimura model. The NJ calculation was performed utilizing Actinoplanes regularis DSM 43151T as the outgroup and 500 bootstrap replicates to assess the stability of the grouping.

The almost complete 16S rRNA gene sequence of strain HKI0641T was a continuous stretch of 1460 bp between positions 25 and 1518 of the Escherichia coli numbering (Brosius et al., 1978). The complete signature nucleotide patterns associated with the order Actinomycetales and the family Micromonosporaceae were identified (Table S2; Zhi et al., 2009). The sequence-based similarity calculations indicated that the closest relatives of strain HKI0641T were Micromonospora coxensis DSM 45161T (99.1 %) and Micromonospora marina DSM 45555T (99.0 %). Due to the high levels of relatedness of strains of species of the genus Micromonospora based on their 16S rRNA gene sequences (Carro et al., 2010; Koch et al., 1996), we set out to verify the 16S rRNA gene-derived phylogenetic classification by applying a gyrB-based method (Kasai et al., 2000). According to this analysis, however, strain HKI0641T should be affiliated with Micromonospora aurantiaca DSM 43813T rather than with the aforementioned species. We illustrated the observed discrepancy by comparing both inferred trees in a tanglegram (Böcker et al., 2009). This graphical juxtaposition showed several lines crossing, thereby indicating significant methodological bias (Fig. 1). To resolve the phylogenetic grouping of strain HKI0641T, spectroscopic DNA–DNA hybridization experiments were performed in duplicate according to the methods of De Ley et al. (1970) and Huss et al. (1983). The required DNA was obtained following cell disruption and purification of the resulting crude lysate via column chromatography on hydroxyapatite (Cashion et al., 1977). The highest DNA–DNA reassociation value was obtained between strain HKI0641T and M. aurantiaca DSM 43813T (mean value, 44.3 %), whereas the corresponding values with M. marina DSM 45555T (34.9 %) and M. coxensis DSM 45161T (11.5 %) were significantly lower (Table S3). This result corroborated the superiority of gyrB gene sequence analysis for inferring intrageneric relationships in the genus Micromonospora. Since the phylogenetic definition of a species generally excludes strains with <70 % DNA–DNA relatedness, it was evident that the isolate HKI0641T represented a distinct species (Wayne et al., 1987).

Subsequently, the phenotypic features of the novel strain were analysed. Gram staining and cell morphology were examined under a phase-contrast microscope using 24 h-old cultures grown on ISP-2 agar at 28 °C. For scanning
electron microscopy, a 28 day-old agar culture was suspended in a phosphate-buffered salt solution. The cells were fixed with 0.5% glutaraldehyde, washed and dehydrated in ascending ethanol concentrations. Afterwards the samples were critical-point dried using liquid CO\textsubscript{2} and sputter coated with platinum using a SCD005 sputter coater (BAL-TEC) to avoid surface charging. Finally the specimens were investigated with a field emission scanning electron microscope (LEO-1530 Gemini; Carl Zeiss NTS). The fatty acid profile was determined according to the method described by Groth et al. (1996). For quinone and polar lipid analysis, cells were grown in ISP-2 medium at 28 °C. Quinone analysis was performed according to the procedure described by Collins et al. (1977). Polar lipids were determined according to the methods of Minnikin et al. (1979) and Collins & Jones (1980). Isomers of diaminopimelic acid in whole cells hydrolysates were analysed by TLC on cellulose (Schleifer & Kandler, 1972). The occurrence of mycolic acids was determined by TLC as described by Minnikin et al. (1975). Whole-cell sugars were examined according to the method of Schumann (2011). The utilization of carbon sources was investigated using the API 50 CH B system (bioMerieux). Temperature-dependent growth was analysed on ISP-2 agar at the following incubation temperatures: 4, 10, 20, 25, 28, 37 and 45 °C. Tolerance to NaCl and pH were determined on ISP-2 agar at 28 °C by the addition of 2, 4, 6, 8, 10 or 15% (w/v) NaCl and using a pH range from 4 to 10. Susceptibility to antibiotics was tested on ISP-2 agar at 28 °C.

The morphological and chemical properties of strain HKI0641T are consistent with its classification as a member of the genus Micromonospora (Genilloud, 2012). The isolate developed substrate hyphae on ISP-2 agar, oatmeal agar (ISP-3) and on inorganic salts–starch agar (ISP-4) (Shiring & Gottlieb, 1966). In comparison with the former three media, the growth on glycerol–asparagine agar (ISP-5) was delayed (Table S4). Abundant black spores were observed on ISP-2 agar (Fig. 2, Fig. S1), but no soluble pigments were observed in any of the media tested. Aerial mycelium was always absent. M. aurantiaca DSM 43813T, Micromonospora purpureochromogenes DSM 43821T and Micromonospora tulbaghiae DSM 45142T exhibited the same growth profile as strain HKI0641T, albeit they differed in sporulation and in the colour of their colonies. The growth temperature of strain HKI0641T ranged from 20 to 37 °C, with optimal growth occurring at 28 °C. Except for M. aurantiaca DSM 43813T, which did not grow below 25 °C, all other tested strains of species of the genus

![Fig. 1. Tanglegram comparing neighbour-joining phylogenetic trees based upon gyrB (left) and 16S rRNA (right) gene sequences from strain HKI0641T and members of the family Micromonosporaceae. Actinoplanes regularis DSM 43151T was used as an outgroup. The numbers on the branches indicate the bootstrap values (%) from 500 resamplings; only values >50% are indicated. Bar, 0.01 substitutions per nucleotide position.](8244055)

![Fig. 2. Scanning electron micrograph of strain HKI0641T cultivated at 28 °C on ISP-2 agar for 28 days. Bar, 1 μm.](8244056)
Micromonospora thrived in the same temperature range. Most strains tolerated pH 6–10 and up to 2 % NaCl. Only M. tulbaghiae DSM 45142T was restricted to pH 7–9. Strain HKI0641T also grew at elevated NaCl concentrations up to 4 %. The fatty acid profile of strain HKI0641T was dominated by branched-chain fatty acids in accordance with those of other species of the genus Micromonospora. However, some qualitative and quantitative differences were found. While anteiso-C15:0 was a major constituent of strain HKI0641T (19.9 %) and M. aurantiaca DSM 43813T (16.4 %), the same fatty acid was much less notable in M. marina DSM 45555T (4.9 %) and M. purpureochromogenes DSM 43814T (3.1 %). Instead the latter two type strains were distinguished by increased levels of iso-C17:0. All four strains shared significant amounts of iso-C15:0 and iso-C16:0 (Table S5). The cell wall of strain HKI0641T contained meso-diaminopimelic acid while mycolic acids were not detected, which is in congruence with the taxonomic position in the genus Micromonospora. Whole-cell sugars included arabinose, galactose, glucose, mannose, ribose and xylose. Diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylinositol mannoside (PIM) were the major polar lipids. Furthermore, trace amounts of phosphatidylglycerol as well as one unknown phospholipid, two glycolipids and three other lipids were found (Fig. S2). The predominant menaquinones were MK-10(H4) (54 %), MK-10(H2) (20 %) and MK-10 (13 %), besides small amounts of MK-9(H4) (4 %), MK-10(H4) (3 %) and MK-9(H2) (2 %). The phenotypic properties that differentiate HKI0641T from the type strains of phylogenetically related species are given in Table 1. In particular, the ability to resort to the glycosides amygdalin or arbutin as sole carbon source appear to be highly distinctive metabolic traits. Furthermore, the type strains M. aurantiaca DSM 43813T and M. marina DSM 45555T, which are phylogenetically most closely related to strain HKI0641T, can be easily distinguished based upon the colour of their colonies on ISP-4 agar (Table S4).

Resistance genes are widely encountered among antibiotic-producing bacteria to confer self-protection (Cundliffe & Demain, 2010) and, in some cases, the resistance profile of a bacterial strain reflects its potential for the biosynthesis of certain antibiotics (Hotta & Okami, 1996). A set of different antibacterial compounds was hence profiled against the isolated strain HKI0641T and also against closely related species of the genus Micromonospora. Except for novobiocin, all tested antibiotics that are known to be derived from actinomycete bacteria, such as kanamycin, streptomycin, tetracycline, chloramphenicol or vancomycin, were active against the strains of species of the genus Micromonospora (Table 1). It appeared thus unlikely that the observed antimicrobial effects of strain HKI0641T could be ascribed to any of these compounds. To identify the metabolites that account for its biological activity, repeat fermentations were carried out on a 200 l scale in production medium (2 % d-sucrose, 0.2 % castonie, 0.5 % cane molasses, 0.01 % FeSO4.7H2O, 0.02 % MgSO4.7H2O, 0.05 % NaCl and 0.5 % CaCO3) at 30 °C. At the end of cultivation, the culture supernatant was separated from the cells by centrifugation at 11 710 g and extracted with ethyl acetate. The extract was fractionated by open column chromatography on silica gel 60 using a dichloromethane-methanol gradient and, subsequently, on Polygroprep 60-50 C18 (Macherey–Nagel) using a methanol–water gradient. Fractions that showed activity in the agar diffusion assay were pooled and subjected to semipreparative reverse phase-HPLC. After an initial separation on a Nucleodur C18 HTec column (5 μm, VP 250/10, Macherey–Nagel; eluent: 80 % methanol) the final purification of the active component was achieved on a Nucleodur C18 PAH column (3 μm, VP 250/8, Macherey–Nagel; eluent: 80 % acetonitrile). This approach yielded 7.6 mg of the known antibiotic telomycin (Figs S3 and S4), which was identified by comparison of its spectroscopic data with those published in the literature (Kumar & Urry, 1973). Further testing revealed that the observed bioactivity of strain HKI0641T is largely due to the production of telomycin. The activity profile of the isolated peptide antibiotic was consistent with previous reports (Sheehan et al., 1968). To the best of our knowledge, this is the first report of telomycin production in a species of the genus Micromonospora.

Consolidating morphological, biochemical and genetic data, it is evident that strain HKI0641T exhibits all characteristic features of the genus Micromonospora. The strain can be distinguished from the most closely related species of the genus Micromonospora by both physiological and genetic traits. The deviations in the 16S rRNA and the gyrB gene sequences from those of species of the genus Micromonospora with validly published names as well as DNA–DNA hybridization data suggest that HKI0641T represents a novel species of the genus Micromonospora, for which the name Micromonospora schwarzwaldensis sp. nov. is proposed.

Description of Micromonospora schwarzwaldensis sp. nov.

Micromonospora schwarzwaldensis (schwarz.wald.en’sis. N.L. fem. adj. schwarzwaldensis of or belonging to Schwarzwald, the region where the type strain was isolated).

Gram-stain-positive and strictly aerobic, mesophilic actinomycete. Colonies on ISP-2 agar are orange. Well-developed and branched substrate hyphae bear black, smooth-surfaced spores with a diameter of 600 nm. Aerial hyphae are not produced. Growth is good on ISP-2, ISP-3 and ISP-4 agar and moderate on ISP-5 agar. The growth temperature range is 20–37 °C. Optimal growth occurs at 28 °C. Grows at pH 6–9 and in the presence of <4 % NaCl. Utilizes cellobiose, lactose, maltose and salicin as sole carbon sources for energy, but not fucoside, melicitose or raffinose. The diagnostic diamino acid of the cell-wall peptidoglycan is meso-diaminopimelic acid. Whole-cell sugars include arabinose, galactose, glucose, mannose, ribose and xylose. The predominant menaquinone is...
Table 1. Phenotypic features of strain HKI0641^T and closely related species of the genus Micromonospora

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amygdalin</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>L-Arabinose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>W</td>
</tr>
<tr>
<td>Arbutin</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>W</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fructose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mannitol</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>W</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mannose</td>
<td>W</td>
<td>-</td>
<td>W</td>
<td>+</td>
<td>W</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Melibiose</td>
<td>-</td>
<td>+</td>
<td>W</td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>W</td>
</tr>
<tr>
<td>Raffinose</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>D-Ribose</td>
<td>W</td>
<td>-</td>
<td>+</td>
<td>W</td>
<td>W</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Salicin</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>W</td>
<td>W</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trehalose</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>-</td>
<td>W</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D-Xylose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>W</td>
<td>W</td>
<td>-</td>
</tr>
<tr>
<td>Temperature for growth (°C)</td>
<td>20–37</td>
<td>25–37</td>
<td>20–37</td>
<td>20–37</td>
<td>20–37</td>
<td>20–37</td>
<td>20–37</td>
</tr>
<tr>
<td>pH for growth</td>
<td>6–9</td>
<td>6–10</td>
<td>6–10</td>
<td>6–10</td>
<td>6–10</td>
<td>6–10</td>
<td>7–9</td>
</tr>
<tr>
<td>Tolerance to 2 % NaCl</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tolerance to 4 % NaCl</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Resistance to sulphonamide (200 µg)</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Results were taken after incubation at 28 °C for 7 days.
†Spores observed after 7 days of cultivation.

MK-10(H4). The phospholipid profile comprises DPG, PE, PI and PIM. Major cellular fatty acids are anteiso-C15:0, iso-C16:0, iso-C15:0 and C16:0.

The type strain is HKI0641^T (=DSM 45708^T=CIP 110415^T), isolated from soil near the Schwarzenbach dam, Germany. The type strain produces the antibiotic telomycin.

Acknowledgements

We are grateful to Carmen Schult, Karin Perlet and Bettina Bardl for excellent technical assistance and Jean Euzéby for his advice on the specific epithet. Research in the group ‘Secondary Metabolism of Predatory Bacteria’ is generously supported by the Deutsche Forschungsgemeinschaft (DFG)-funded graduate school Jena School for Microbial Communication (JSMC). Dr M. S. Vela Gurovic gratefully acknowledges the German Academic Exchange Service (DAAD) for a postdoctoral research fellowship (grant# A1071666).

References

