Amphibacillus cookii sp. nov., a facultatively aerobic, spore-forming, moderately halophilic, alkalithermotolerant bacterium

Benoît Pugin,1,2 Jenny M. Blamey,2 Bonnie K. Baxter3 and Juergen Wiegel1

1Department of Microbiology, University of Georgia, 1000 Cedar Street, Athens, GA 30602, USA
2Fundación Biociencia, José Domingo Canás 2280, Ñuñoa, Santiago, Chile
3Great Salt Lake Institute, Westminster College, 1840 South, 1300 East, Salt Lake City, UT 84105, USA

Novel strains of facultatively aerobic, moderately alkaliphilic and facultatively halophilic bacteria were isolated from a sediment sample taken from the Southern Arm of Great Salt Lake, Utah. Cells of strain JW/BP-GSL-QD T (and related strains JW/BP-GSL-RA and JW/BP-GSL-WB) were rod-shaped, spore-forming, motile bacteria with variable Gram-staining. Strain JW/BP-GSL-QD T grew under aerobic conditions between 14.5 and 47 °C (optimum 39 °C), in the pH37°C range 6.5–10.3 (optimum pH37°C 8.0), and between 0.1 and 4.5 M Na + (optimum 0.9 M Na +). No growth was observed in the absence of supplemented Na +. Strain JW/BP-GSL-QD T utilized L-arabinose, D-fructose, D-galactose, D-glucose, inulin, lactose, maltose, mannitol, D-mannose, pyruvate, D-ribose, D-sorbitol, starch, trehalose, xylitol and D-xylose under both aerobic and anaerobic conditions, and used ethanol and methanol only under aerobic conditions. Strains JW/ BP-GSL-WB and JW/BP-GSL-RA had the same profiles except that methanol was not used aerobically. During growth on glucose, the major organic compounds formed under aerobic conditions were acetate and lactate, and under anaerobic conditions, the fermentation products were formate, acetate, lactate and ethanol. Oxidase and catalase activities were not detected and cytochrome was absent. No respiratory quinones were detected. The main cellular fatty acids were iso-C15 : 0 (39.1 %) and anteiso-C15 : 0 (36.3 %). Predominant polar lipids were diphostatidylglycerol, phosphatidylglycerol and an unknown phospholipid. Additionally, a small amount of an unknown glycolipid was detected. The DNA G+C content of strain JW/BP-GSL-QD T was 35.4 mol% (determined by HPLC). For strain JW/BP-GSL-QD T the highest degree of 16S rRNA gene sequence similarity was found with Amphibacillus jilinensis (98.6 %), Amphibacillus sediminis (96.7 %) and Amphibacillus tropicus (95.6 %). The level of DNA–DNA relatedness between strain JW/BP-GSL-QD T and A. jilinensis Y1 T was 58 %. On the basis of physiological, chemotaxonomic and phylogenetic data, strain JW/BP-GSL-QD T represents a novel species of the genus Amphibacillus, for which the name Amphibacillus cookii sp. nov. is proposed. The type strain is JW/BP-GSL-QD T (≡ ATCC BAA-2118 T ≡ DSM 23721 T).

The genus Amphibacillus currently comprises five recognized species, the type species Amphibacillus xylanus, Amphibacillus fermentum, A. tropicus, A. sediminis and A. jilinensis. Members of the genus Amphibacillus are rod-shaped, facultatively aerobic, have a lack of catalase activity and cytochromes are absent. A mixed water-sediment sample from an area with visible salt crusts was collected from the Southern Arm of Great Salt Lake, Utah (Antelope Island marina, 40°44′17.2″ N, 111°52′28.8″ W). At that time, the sediment on the surface from which the sample was taken had a temperature of 40 °C and a pH of 7.4. The lake water at this relatively frequently sampled location usually has a pH around 7.3 and a total salt concentration of 12 % (w/v). The pore water of the sample had about 32 % (w/v) NaCl, as measured by refractive index. Enrichment cultures were prepared by inoculating 5 g soil

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequences of strains JW/BP-GSL-QD T, JW/BP-GSL-WB and JW/BP- GSL-RA are HM057160, HM057164 and HM057162, respectively.

Two supplementary figures are available with the online version of this paper.
in 75 ml pre-reduced carbonate-buffered medium consisting of (l−1): 0.2 g KH₂PO₄, 0.1 g MgCl₂.6H₂O, 0.5 g NH₄Cl, 0.2 g KCl, 100 g NaCl, 68 g Na₂CO₃, 38 g NaHCO₃, 0.7 g cysteine/HCl, 5 g yeast extract, 5 g tryptone, 5 g sucrose, 1 ml trace element solution (Kevbrin & Zavarzin, 1992) and 10 ml vitamin solution (Wolin et al., 1963). The pH₃⁷°C was adjusted to 9.5 with KOH pellets. Enrichments were incubated under anaerobic conditions (O₂-free N₂ head gas) at 37 °C. After three successive transfers in liquid media, pure cultures were obtained in agar (2 %, w/v) shake-roll tubes using the above medium (Ljungdahl & Wiegel, 1986). The independently obtained strains, JW/BP-GSL-QDT, JW/BP-GSL-WB and JW/BP-GSL-RA, were further characterized. The three strains obtained from separate enrichments inoculated from the same sediment sample had very similar growth behaviours and identical 16S rRNA sequences and thus, for further characterization, the type strain was chosen arbitrarily due to its slightly faster growth rate.

Colonies of the three strains appeared after 1 day in 2 % (w/v) agar shake-roll tubes kept under a gas phase of O₂-free N₂ and incubated at 37 °C. Colonies were 0.8–2 mm in diameter, circular and white. Cell morphology was observed via light microscopy (Olympus VANOX phase-contrast microscope). In the exponential growth phase, the rod-shaped cells were 0.5–0.6 μm in diameter and 2–7 μm in length (Fig. 1a). Cells generally occurred singly, in pairs and infrequently in short chains. Tumbling motility was observed. Gram staining was performed using the Burke method (Doetsch, 1981); it was positive at the early exponential growth phase and became negative during late exponential growth phase.

Formation of spores was induced on a solid agar plate incubated aerobically using a 10 fold reduction of yeast extract, tryptone and sucrose concentrations along with the addition of 6 mg MnCl₂.4H₂O l−1. Sporulation of strain JW/BP-GSL-QDT was observed after 1 day incubation at 37 °C, though only rarely. Spores are circular, 1.2–1.3 μm in diameter, located terminally and caused the mother cell to swell (Fig. 1b). Viable cultures were obtained after cultures were heated at 100 ºC for 2 min.

When tested, the isolates were found to be facultatively aerobic and thus, unless otherwise indicated, the determination of properties were done under aerobic growth conditions in cotton-plugged tubes shaken at 160 r.p.m., using the carbonate-buffered medium supplemented with 0.5 % (w/v) yeast extract, 0.5 % (w/v) tryptone and 0.5 % (w/v) sucrose. For all cultural and physiological analyses, the pH was set at 37 ºC using a pH electrode calibrated at 37 ºC to avoid the influence of temperature on pH (Wiegel, 1998). The salinity range for growth was assessed between 0 and 5 M Na⁺ using intervals of 0.1–0.2 M Na⁺. Due to the presence of the sodium carbonates used for pH control, salinity equivalents are given in M of Na⁺. The salinity range for growth of strains JW/BP-GSL-RA and JW/BP-GSL-WB at 37 ºC and pH₃⁷°C 9.5 was 0.1–4.5 M Na⁺ [corresponding to 0.6–26.5 % (w/v) NaCl equivalent] with an optimum of 0.9 M Na⁺ [corresponding to approximately 5 % (w/v) NaCl equivalent]. Strain JW/BP-GSL-WB grew between 0.1 and 4.3 M Na⁺ with an optimum at 0.9 M Na⁺. No growth occurred in the absence of Na⁺ (substituting Na₂CO₃ and NaHCO₃ with K₂CO₃ and KHCO₃) or at 4.8 M Na⁺ and above. Maximum Na⁺ tolerance was neither increased nor decreased in the presence of supplemented 500 mM KCl.

The temperature range for growth was determined using a temperature gradient incubator (Scientific Industries) in a carbonate-buffered medium containing 0.9 M Na⁺ (0.32 M Na₂CO₃ and 0.23 M NaHCO₃) at pH₃⁷°C 9.5. The temperature range for growth was assessed between 4 and 59 ºC, with temperature intervals of 1.5–2 ºC. Strain JW/BP-GSL-QDT was mesophilic to slightly thermotolerant, growing in a temperature range of 14.5–47 ºC with a broad temperature optimum of 37–43 ºC (no growth observed at ≤12.5 ºC or at ≥49 ºC when incubated for up to 2 weeks). Strains JW/BP-GSL-RA and JW/BP-GSL-WB

Fig. 1. Cell morphology of strain JW/BP-GSL-QDT. Phase-contrast micrographs of vegetative cells (a) and sporulating cells (b). Bars, 5 μm (a) and 2 μm (b).
The pH range for growth was determined at a Na\(^+\) concentration of 0.9 M and at 37 °C using carbonates (0.32 M Na\(_2\)CO\(_3\), 0.23 M NaHCO\(_3\)) and CAPS (50 mM) and pH buffers. The pH range for growth was assessed between pH 3.7 and 11.8, with intervals of 0.2–0.3 pH units. The pH 3.7 range for growth of the strain JW/BP-GSL-QD\(^T\) was 6.5–10.3, with an optimum at pH 3.7 8.0, with no growth at pH 3.7 6.3 and below, or at pH 37 10.5 and above. Strains JW/BP-GSL-RA and JW/BP-GSL-WB both grew in a pH 3.7 range of 6.5–10.0 with an optimum pH 3.7 8.0. The doubling time for strain JW/BP-GSL-QD\(^T\) was 1.8 h under aerobic conditions at 37 °C, 160 r.p.m., pH 3.7 8.0, 0.9 M Na\(^+\), with 0.5 % (w/v) yeast extract, 0.5 % (w/v) tryptone and 0.5 % (w/v) succrose as substrates.

The strains were tested for utilization of various substrates (0.5 %, w/v) using carbonate-buffered medium containing 0.2 % (w/v) yeast extract, 0.9 M Na\(^+\), at 37 °C, pH 3.7 9.5, and under both aerobic and anaerobic conditions. Cultures were incubated for up to 5 days and growth was judged positive if, in the third or subsequent transfer, the OD\(_{500}\) of the culture was twice that of a control culture incubated with only 0.2 % yeast extract. Strain JW/BP-GSL-QD\(^T\) used L-arabinose, D-fructose, D-galactose, D-glucose, inulin, lactose, maltose, mannitol, D-mannose, pyruvate, D-ribose, D-sorbitol, starch, trehalose, xylose and D-xylene under both aerobic and anaerobic conditions. Ethanol and methanol were utilized under aerobic conditions. No growth was observed aerobically or anaerobically with crotonate, formate, glucoronic acid, L-glycine and trimethylamine. The substrate utilization profile for strains JW/BP-GSL-RA and JW/BP-GSL-WB was the same except for methanol, which was not used aerobically. The main organic products from glucose and under aerobic conditions (shaking at 160 r.p.m.) were acetate and lactate. Under anaerobic conditions, formate, acetate, ethanol and lactate were the main organic fermentation products.

For the catalase test, the production of bubbles upon addition of 3 % H\(_2\)O\(_2\) solution to cells was followed (Staphylococcus epidermidis ATCC 14990 was used as a positive control). Oxidase activity was determined by transferring cells to filter paper with freshly prepared 1 % (w/v) n, n-dimethyl-p-phenylenediamine hydrochloride. Strain JW/BP-GSL-QD\(^T\) was negative for both catalase and oxidase tests. Moreover, spectrophotometric analysis of the cell lysis lacked any evidence of cytochromes based upon a lack of an identifiable Soret peak. Methyl red and Voges–Proskauer tests (Lánya, 1987) were both negative. Biochemical characteristics were determined under both aerobic and anaerobic conditions using the API ZYM and API 20E system (bioMérieux) incubated at 37 °C for 4 and 18 h respectively. To perform these assays, cells were suspended in the optimum growth medium (0.9 M Na\(^+\), pH 3.7 8.0) lacking succrose, tryptone and yeast extract. The procedures were done according to the manufacturer’s instructions. The same profiles were obtained aerobically and anaerobically for the three related strains, except for those under anaerobic conditions whose esterase lipase and β-galactosidase activities were negative. The following profiles were obtained: β-galactosidase, β-glucosidase, arginine dihydrolase, lysine decarboxylase, ornithine decarboxylase, urease, tryptophan deaminase, esterase-C4 and esterase-C4 and esterase lipase activities were positive. Tryptophan deaminase, gelatinase, alkaline phosphatase, lipase-C14, leucine arylamidase, valine arylamidase, cysteine arylamidase, trypsin, x-chymotrypsin, acid phosphatase, napthol-AS-BL-phosphohydrolase, x-galactosidase, β-glucuronidase, β-glucosidase, N-acetyl-β-glucosaminidase, N-mannosidase and β-fucosidase activities, nitrate reduction, H\(_2\)S production, indole production and acetoin production were negative. Citrate utilization was positive.

Polar lipid analyses, quinone analyses and cellular fatty acid composition were carried out by the Identification Service of the DSMZ and Dr B. J. Tindall, DSMZ, Braunschweig, Germany. For these three analyses, cells were grown at the DSMZ, in medium DSM 545 (http://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium54a.pdf), under aerobic conditions at pH 8 and 37 °C. Cells in exponential phase were collected for analysis. Quinones and polar lipids were extracted using the two stage method described by Tindall (1990a, b). Polar lipids were analysed by 2D silica gel TLC (Tindall et al., 2007), and the predominant polar lipids of strain JW/BP-GSL-QD\(^T\) were diphosphatidylglycerol, phosphatidylethanolamine and an unknown phospholipid (PL1). Additionally, a small amount of an unknown glycolipid was detected (the TLC plate is available as Fig. S1, available in IJSEM Online). One spot has not been labelled because it may not be a lipid, but rather a large hydrophobic peptide. Indeed, this ninhydrin-positive spot appears to be much smaller and weaker when stained with dodecylmaltibigosphoric acid. No quinones were detected from JW/BP-GSL-QD\(^T\), as is also the case for the other species of the genus Amphibacillus. Fatty acid methyl esters were obtained by saponification, methylation and extraction using the methods of Miller (1982) and Kuykendall et al. (1988). The fatty acid methyl ester mixtures were separated using the Sherlock Microbial Identification System (MIS; MIDI), which consisted of an Agilent model 6890N gas chromato-graph fitted with a 5 % phenyl-methyl silicone capillary column (0.2 mm × 25 m), and a flame-ionization detector. Peaks were automatically integrated, and fatty acid names and percentages were calculated by using the MIS Standard Software and database (MIDI). The fatty acid profile was largely composed of iso-C\(_{15:0}\) (39.8 %) and anteiso-C\(_{15:0}\) (36.3 %). In addition, C\(_{14:0}\) (3.0 %), C\(_{15:0}\) (1.0 %), C\(_{16:0}\) (6.9 %), iso-C\(_{14:0}\) (1.0 %), iso-C\(_{16:0}\) (2.3 %), iso-C\(_{17:0}\) (2.0 %) and anteiso-C\(_{17:0}\) (6.7 %) were detected.

The resistance of strains JW/BP-GSL-QD\(^T\), JW/BP-GSL-RA and JW/BP-GSL-WB was tested using antibiotic discs on freshly inoculated agar plates. All strains were sensitive to erythromycin (15 μg), penicillin (10 IU), ampicillin (10 μg) and vancomycin (30 μg), but were not sensitive to...
tetracycline (30 μg), kanamycin (30 μg), streptomycin (10 μg), neomycin (30 μg) or bacitracin (10 IU).

The DNA of strains JW/BP-GSL-QD, JW/BP-GSL-RA and JW/BP-GSL-WB were extracted using an UltraClean DNA isolation kit (Mo Bio). The DNA G + C content was 35.4 ± 0.69 (n = 4) mol%, determined by HPLC according to the method described by Mesbah et al. (1989). The 16S rRNA genes were amplified via PCR using primers 27F and 1492R, and PrimeStar HS polymerase (Takara), with the thermocycler conditions of 10 s at 98 °C, 5 s at 58 °C and 90 s at 72 °C, repeated for a total of 30 cycles. The 16S rRNA genes were sequenced by Macrogen (Seoul, Korea), and subsequently compared with all GenBank entries by Blast search (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

The nearly complete 16S RNA gene sequences of strains JW/BP-GSL-QD, JW/BP-GSL-RA and JW/BP-GSL-WB were aligned with highly similar species using MEGA v5.05. A phylogenetic tree was constructed (Fig. 2) using the neighbour-joining method (Zhetsky & Nei, 1992) and distances were computed using the Jukes–Cantor correction method (Jukes & Cantor, 1969) (a maximum-parsimony tree is shown in Fig. S2). Using the EzTaxon server (http://www.eztaxon.org/; Chun et al., 2007) the highest degree of 16S RNA gene sequence similarity for strain JW/BP-GSL-QD was found with Amphibacillus jilinensis (98.6 %), Amphibacillus sediminis (96.7 %) and Amphibacillus tropicus (95.6 %). DNA–DNA hybridization assays were performed at DSMZ as follows: DNA was purified by chromatography on hydroxyapatite as described by Cashion et al. (1977). DNA–DNA hybridization was carried out as described by De Ley et al. (1970) with the modifications described by Huß et al. (1983) using a model Cary 100 Bio UV/VIS-spectrophotometer equipped with a Peltier-mediated 6 × 6 multiecell changer and a temperature controller with an in situ temperature probe (Varian). The analysis revealed that strain JW/BP-GSL-QD and A. jilinensis CGMCC 1.5123T had 58 % DNA–DNA relatedness.

Phylogenetically, strains JW/BP-GSL-QD, JW/BP-GSL-RA and JW/BP-GSL-WB belong to the rRNA family group 1 of bacilli and cluster within the genus Amphibacillus. Beside differences in the 16S rRNA gene sequences, JW/BP-GSL-QD can be distinguished from the genus Paralrobacillus by its lack of catalase, quinones and cytochromes (Ishikawa et al., 2002), from the genus Natronobacillus by its lack of catalase (Sorokin et al., 2008), and from the genus Halolactibacillus by its fatty acid composition (Ishikawa et al., 2005). Indeed, strain JW/BP-GSL-QD showed a fatty acid profile similar to Amphibacillus and Natronobacillus species, mainly composed of C16:0 iso-C15:0 and anteiso-C15:0, but not to Halolactibacillus species, which are mainly composed of anteiso-C13:0 and C16:0. The novel isolates can be distinguished from other Amphibacillus species and closely related genera by various physiological properties (Table 1). Compared with A. jilinensis and based on its low DNA–DNA relatedness.
Table 1. Differential characteristics of *Amphibacillus cookii* strain JW/BP-GSL-QDT and related organisms

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Source of isolation</th>
<th>Motility</th>
<th>Spore formation</th>
<th>Rod size (μm)</th>
<th>pH range (optimum)</th>
<th>Catalase activity</th>
<th>Major isoprenoid quinone</th>
<th>DNA G+C content (mol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Great Salt Lake, USA</td>
<td>++</td>
<td>++</td>
<td>0.5–0.6 (3)</td>
<td>6.5–10.3 (18)</td>
<td>+</td>
<td>MK-1</td>
<td>35.4*</td>
</tr>
<tr>
<td>2</td>
<td>Lake Jilin, China</td>
<td>++</td>
<td>+</td>
<td>6 (9)</td>
<td>7.5–10.5 (90)</td>
<td>+</td>
<td>None</td>
<td>37.7</td>
</tr>
<tr>
<td>3</td>
<td>Lake Hamana, Japan</td>
<td>+++</td>
<td>+</td>
<td>2–3.2 (6)</td>
<td>14.5–47 (39)</td>
<td>+</td>
<td>None</td>
<td>42.3*</td>
</tr>
<tr>
<td>4</td>
<td>Lake Magadi, Kenya</td>
<td>++</td>
<td>+</td>
<td>2–7 (6)</td>
<td>0.2–8 (0.5)</td>
<td>+</td>
<td>MK-1</td>
<td>41.5</td>
</tr>
<tr>
<td>5</td>
<td>Manure compost</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>ND (9)</td>
<td>+</td>
<td>None</td>
<td>39.2</td>
</tr>
<tr>
<td>6</td>
<td>Soda lake, Russia</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>ND (9)</td>
<td>+</td>
<td>None</td>
<td>36.6*</td>
</tr>
<tr>
<td>7</td>
<td>Decaying marine algae</td>
<td>+</td>
<td>+</td>
<td>0.5–4.5 (1.5)</td>
<td>10–47.5 (37–40)</td>
<td>+</td>
<td>MK-7</td>
<td>36.6*</td>
</tr>
<tr>
<td>8</td>
<td>Decaying marine algae</td>
<td>+</td>
<td>+</td>
<td>0.3–4.5 (1.5)</td>
<td>25–4.5 (36–40)</td>
<td>+</td>
<td>MK-7</td>
<td>36.6*</td>
</tr>
<tr>
<td>9</td>
<td>Decaying marine algae</td>
<td>+</td>
<td>+</td>
<td>0.4–4.5 (2.4)</td>
<td>5–47.5 (37–40)</td>
<td>+</td>
<td>MK-7</td>
<td>36.6*</td>
</tr>
</tbody>
</table>

1, *Amphibacillus cookii* strain JW/BP-GSL-QDT; 2, *A. jilinensis* (data from Wu et al., 2010); 3, *A. sediminis* (An et al., 2007); 4, *A. fermentum* (Zhilina et al., 2001); 5, *A. tropicus* (Zhilina et al., 2001); 6, *A. xylanus* (Niimura et al., 1990); 7, *N. azotifigens* (Borodin et al., 2008); 8, *Paraliobacillus ryukyuensis* (Ishikawa et al., 2002); 9, *Halolactibacillus halophilus* (Ishikawa et al., 2005). ND, Not determined.

* Determined by HPLC method.

** Determined by DNA melting (Tm).
Amphibacillus cookii sp. nov.

(58%), its dependence on Na\(^+\), its higher tolerance to salt (up to 4.5 M Na\(^+\)), and its higher optimal temperature for growth (39 °C), JW/BP-GSL-QD\(^T\) represents a novel species. The other two strains, JW/BP-GSL-RA and JW/BP-GSL-WB, share the same physiological differences to A. jilinensis as does the type strain.

However, from the topology of the 16S rRNA gene sequence-based trees, it is evident that the species content of the genus Amphibacillus in its actual state needs a revision. The type species Amphibacillus xylanus forms a group with Amphibacillus fermentum and all species from the genera Paraliobacillus and Halolactibacillus, while A. jilinensis, A. sediminis, A. tropicus and Natronobacillus azotifigens and the currently described novel species form a separate lineage. An extensive and detailed analysis of phylogenetic data combined with physiological and chemotaxonomic data of all the closely related genera Natronobacillus, Halolactibacillus and Paraliobacillus is required to achieve an accurate reclassification of the genus Amphibacillus. This work is outside of the scope of this manuscript.

Until this work is done, the strains JW/BP-GSL-QD\(^T\), JW/BP-GSL-RA, and JW/BP-GSL-WB are placed in the presently described genus Amphibacillus, as Amphibacillus cookii sp. nov., which is based on the 16S rRNA gene sequence analysis, DNA–DNA hybridization results and differences in physiological and chemotaxonomic properties. Strain JW/BP-GSL-QD\(^T\) (=ATCC BAA-2118\(^T\)=DSM 23721\(^T\)) is designated the type strain.

Description of Amphibacillus cookii sp. nov.

Amphibacillus cookii (cook’i.i. N.L. gen. masc. n. cookii, named in honour of Gregory Cook, to recognize his contribution to the microbiology and bioenergetics of extremophiles).

The white circular colonies grown inside anaerobic 2 % agar shake roll-tubes contain tumbling motile cells of 0.5–0.6 μm in diameter and 2–7 μm in length and appear singly, in pairs and infrequently in short chains. Gram staining is positive during early exponential growth phase and becomes negative during late exponential growth phase. Cells are facultatively aerobic. The temperature range for growth of the type strain (values in parentheses indicate the other strains) is 14.5–47 (12–45) °C with an optimum at 39 (35) °C; no growth at ≤12.5 °C or at ≥49 °C. The pH\(^{37}\)°C range for growth is 6.5–10.3 (6.5–10.0) with an optimum at pH\(^{37}\)°C 8.0. No growth at ≤pH\(^{37}\)°C 6.3 or at ≥pH\(^{37}\)°C 10.5. The salinity range for aerobic growth is 0.1–4.5 (0.1–4.3) M Na\(^+\). No growth occurs in the absence of Na\(^+\) or at ≥4.8 M Na\(^+\). Oxidase and catalase activities are negative. Cytochrome is absent. Methyl red and Voges–Proskauer tests are negative. Yeast extract or tryptone is required for growth. In the presence of 0.2 % (w/v) yeast extract, L-arabinose, D-fructose, D-galactose, d-glucose, inulin, lactose, maltose, mannitol, D-mannose, pyruvate, D-ribose, D-sorbitol, starch, trehalose, xylitol and D-xylose are used as carbon and energy sources under both aerobic and anaerobic conditions. Ethanol and methanol are only used under aerobic conditions except strains JW/BP-GSL-RA and JW/BP-GSL-WB, which do not use methanol. The main organic products from glucose under aerobic conditions were acetate and lactate. Under anaerobic conditions, formate, acetate, ethanol and lactate were the main organic fermentation products. The main cellular fatty acids were iso-C\(_{15:0}\) (39.1 %) and anteiso-C\(_{15:0}\) (36.3 %). Predominant polar lipids are diphasphatidylglycerol, phosphatidylglycerol and an unknown phospholipid (PL1). No quinones were detected.

The type strain, JW/BP-GSL-QD\(^T\) (=ATCC BAA-2118\(^T\)=DSM 23721\(^T\)), was isolated from a mixed water and sediment sample containing a salt crust obtained from the South Arm of Great Salt Lake, Utah (Antelope Island marina, 40 44’172” N, 111 52’288” W). The G+C content of the genomic DNA is 35.4 % (HPLC).

Acknowledgements

We would like to thank Christopher Reich and Lekhnath Sharma for help with the HPLC analyses, Nick Ahmadi for technical assistance, and Harry Daily for the cytochrome analyses. A. jilinensis was kindly provided by Dr Wen-wu Zhang, Zhejiang University, China. This work was supported by grants from the US Airforce Office of Scientific Research (AFOSR 033835-01) and from the National Science Foundation (MCB 0604224).

References

