Methylobacterium oxaidis sp. nov., isolated from leaves of Oxalis corniculata

Akio Tani,¹ Nurettin Sahin² and Kazuhide Kimbara³

¹Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Okayama, Japan
²Mugla University, Eğitim Fakultesi, 48000 Kötêkli, Mugla, Turkey
³Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Shizuoka, Japan

A pink-pigmented, facultatively methylotrophic bacterium, strain 35aT, was isolated from the leaves of Oxalis corniculata. Cells of strain 35aT were Gram-reaction-negative, motile, non-spore-forming rods. The highest 16S RNA gene pairwise sequence similarities for strain 35aT were found with the strains of *Methylobacterium iners* 5317S-33T (96.7 %), 'Methylobacterium soli' YIM 48816 (96.6 %) and *Methylobacterium jeotgali* S2R03-9T (96.3 %). 16S RNA gene sequence similarities with the type strains of all other recognized species of the genus *Methylobacterium* were below 96 %. Major cellular fatty acids were C18:1ω7c, C18:0 and C16:0. The results of DNA–DNA hybridization experiments, analysis of *cpn60* gene sequences, fatty acid profiles, whole-cell MALDI-TOF/MS spectral pattern analysis, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 35aT from its nearest phylogenetic neighbours. Strain 35aT is therefore considered to represent a novel species within the genus *Methylobacterium*, for which the name *Methylobacterium oxaidis* sp. nov. is proposed. The type strain is 35aT (=DSM 24028T =NBRC 107715T).

The genus *Methylobacterium* consists mostly of pink-pigmented, facultatively methylotrophic alphaproteobacteria, and at the time of writing, comprises of 35 species with validly published names (http://www.bacterio.cict.fr/m/methylobacterium.html). However, according to Kato et al. (2001) and *Methylobacterium dichloromethanicum* (Doronina et al., 2000) are later heterotypic synonyms of *Methylobacterium extorquens* and *Methylobacterium rho-desianum* (Green et al., 1988) is an earlier heterotypic synonym of *Methylobacterium lusitanum* (Doronina et al., 2002) because they exhibited high DNA–DNA relatedness values (69–89 %). Also, the species names 'Methylobacterium dankookense' (Lee et al., 2009) and 'Methylobacterium goesingense' (Idris et al., 2006) were effectively but not validly published. Most recently, the species names *Methylobacterium gossipicola* (Madhaiyan et al., 2012), *Methylobacterium cerastii* (Wellner et al., 2012), *Methylobacterium bullatum* (Hoppe et al., 2011 and *Methylobacterium marchantiae* (isolated from a liverwort Marchantia polymorpha L.) (Schauer et al., 2011) were validly published, while the name 'Methylobacterium soli' (Cao et al., 2011) has been only effectively, but not validly, published.

Methylobacteria can grow on single-carbon compounds such as methanol, formaldehyde and formate as sole carbon and energy sources, and also on a wide range of multi-carbon growth substances (Green, 1992). Members of the genus *Methylobacterium* are widespread, especially on plant surfaces, where they assimilate methanol emitted from plants as a product of pectin degradation (Corpe & Rheem, 1989). Analysis of the phyllospheric microbial community showed that members of the genus *Methylobacterium* are one of the predominant bacterial taxa on plant surfaces (Delmotte et al., 2009); that site and plant species are important determinants of the composition of the bacterial community (Knief et al., 2010a); and that isolates belonging to *M. extorquens* and *Methylobacterium tardum* are the most competitive colonizers on plants (Knief et al., 2010b). Recently we isolated diverse strains of the genus *Methylobacterium* from plant leaf samples. One of the isolates, strain...
M. iners indicated that the closest relatives of strain 35a T were determined by using the EzTaxon server version 2.1 (http://www.eztaxon.org; Chun et al., 2007). DNA–DNA hybridization was carried out at 50 °C for 3 h and analysed fluorometrically as described by Ezaki et al. (1989). The DNA–DNA relatedness between strain 35aT and M. iners DSM 19015T, that shared the highest 16S rRNA (96.7 %) pairwise gene sequence similarity was 26.7 % (mean of three replicate experiments). The DNA–DNA relatedness value between strain 35aT and the recently described ‘M. soli’ KCTC 22810, which showed 96.6 % 16S rRNA pairwise gene sequence similarity, was 20 %.

A 16S rRNA gene sequence similarity of less than 97 % has been suggested as the threshold for defining a genomic species (Wayne et al., 1987), which corresponds to a DNA–DNA hybridization value of less than 70 % (Stackebrandt & Goebel, 1994). Recently, 98.7–99.0 % 16S rRNA gene sequence similarity was the threshold recommended for species delineation by Stackebrandt & Ebers (2006). Strain 35aT showed 16S rRNA gene sequence similarity below 97.0 % with all recognized members of the genus Methylobacterium, and DNA–DNA hybridization experiments also confirmed that it represents a novel species.

Previous studies indicated that the cpn60 gene, also known as groEL or hsp60 (encoding the universally conserved 60 kDa chaperonin) is a more phylogenetically informative target than 16S rRNA (Sahin et al., 2010). Therefore cpn60 was selected for phylogenetic analysis as an alternative marker. cpn60 sequences of strain 35aT and its closest relatives were determined directly from PCR fragments using the method described by Hill et al. (2004). Primers H1594 and H1595 amplifying nucleotide positions 274–828 of Escherichia coli cpn60 were used to amplify the universal target region of the gene in strain 35aT and the type or reference strains of M. iners, M. jeotgali and ‘M. soli’. The PCR conditions for amplification were 1 min at 96 °C, 30 cycles of 30 s at 96 °C, 30 s at 58 °C and 30 s at 72 °C, followed by 5 min at 72 °C. Strain 35aT showed 86.1 %, 87 % and 86.1 % cpn60 nucleotide sequence similarity with M. iners DSM 19015T, M. jeotgali LMG 23639T and ‘M. soli’ KCTC 22810, respectively (data not shown).

For whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) analysis (Freiwald & Sauer, 2009), biomass from methanol agar cultures (grown for 3–5 days) was spotted on a stainless steel target plate. After air-drying, 1.5 μl matrix solution [saturated solution of sinapinic acid in 50 % (v/v) acetonitrile and 2.5 % (v/v) trifluoroacetic acid] was applied to each spot. Mass spectra were acquired using a MALDI-TOF Ultraflex mass spectrometer (Bruker Daltonics) in linear positive mode. The measured mass range of spectra was 2–20 kDa. Data from MALDI-TOF/MS analysis (Fig. S2) showed that strain 35aT had a distinctly different mass spectrum compared to other Methylobacterium species, suggesting that it represents a novel species.

Physiological and biochemical tests were carried out at 28 °C. Conventional biochemical tests were performed according to standard methods (Smibert & Krieg, 1994). Oxidation of various substrates was determined by using Biolog GN2 MicroPlates according to the manufacturer’s instructions, at 2, 3, 5, 7 and 10 days with a microplate reader (Powarscan HT, Dainippon Sumitomo Pharma). Data from the nutritional tests are shown in the species description. Modified methanol medium (solidified with agar and containing no yeast extract) was also used in tests for the utilization of methylamine (0.1 % w/v) as a carbon source. Salt tolerance was tested on R2A agar medium supplemented with 2 % (w/v) NaCl. Nitrate reduction was tested in R2A broth containing 0.2 % KNO3.

Genomic DNA was extracted, purified (Marmur, 1961), and the 16S rRNA gene was amplified and sequenced (Lane, 1991). Sequencing was performed with an automated DNA sequencer (model 3130; Applied Biosystems) and ca. 1.5 kb sequence was determined. Phylogenetic analysis was performed using MEGA4 software (Tamura et al., 2007) following multiple alignment of data by the CLUSTAL_X2 program (Larkin et al., 2007) (Fig. S3). Genetic distances were obtained by the Kimura’s two-parameter distance model (Kimura, 1980) and phylogenetic trees were constructed by the neighbour-joining method, is shown in Fig. 1. The maximum-parsimony tree also produced similar results (Fig. S1, available in IJSEM online).

The phylogenetic tree based on 16S rRNA gene sequences, constructed by using the neighbour-joining method, is shown in Fig. 1. The maximum-parsimony tree also produced similar results (Fig. S1, available in IJSEM online).
different spectrum from those of *M. jeotgali* LMG 23639\(^T\),
M. iners DSM 19015\(^T\), and ‘*M. soli*’ KCTC 22810.

Selected physiological and biochemical differential characteristics of strain 35a\(^T\) are compared with those of related type strains in Table 1. Detailed phenotypic descriptions are given in the species description.

Fatty acid methyl ester (FAME) analysis of the whole-cell fatty acids was determined by the Identification Service of the DSMZ using GC (MIDI). A 40 mg sample of cells grown aerobically on R2A agar for 3 days at 28\(^\circ\)C was scraped from Petri dishes and fatty acid methyl esters were obtained by saponification, methylation and extraction using minor modifications of the methods of Miller (1982) and Kuykendall et al. (1988). The fatty acid methyl ester mixtures were separated using the Sherlock Microbial Identification System (MIS) (MIDI; Microbial ID) which consisted of a GC (6890N; Agilent) fitted with a 5 % phenyl-methyl silicone capillary column (0.2 mm x 25 m), a flame-ionization detector, automatic sampler (7683A; Agilent), and a computer with the MIDI database (Hewlett Packard). Peaks were automatically integrated and fatty acid names and percentages calculated by the MIS Standard Software (Microbial ID). The GC parameters were as follows: carrier gas, ultrahigh-purity nitrogen; column head pressure 60 kPa; injection volume 2 \(\mu\)l; column split ratio, 100 : 1; septum purge 5 ml min\(^{-1}\); column temperature, 170–270\(^\circ\)C at 5\(^\circ\)C min\(^{-1}\); injection port temperature, 240\(^\circ\)C; and detector temperature, 300\(^\circ\)C.

The major cellular fatty acids were C\(_{18:1}\)\(^v\)7\(_c\) (90.8 %), C\(_{18:0}\) (3.3 %) and C\(_{16:0}\) (1.95 %). C\(_{18:0}\) 3-OH (1.75 %) was the only hydroxylated fatty acid detected. In addition, an unidentified fatty acid with an equivalent chain-length of 14.959 (0.35 %), Summed feature 2 (comprising C\(_{14:0}\) 3-OH or iso-C\(_{16:1}\); 1.37 %) and Summed feature 3 (comprising C\(_{16:1}\)\(^v\)7\(_c\) or iso-C\(_{15:0}\) 2-OH; 0.46 %) were also detected. Thus, strain 35a\(^T\) could be distinguished from its phylogenetic relatives based on fatty acid profiles, in particular the absence of C\(_{16:0}\) 3-OH and the presence of C\(_{18:0}\) 3-OH.

Analysis of respiratory quinones was carried out by the Identification Service and Dr Brian Tindall, DSMZ, Braunschweig, Germany. DNA base composition analysis based on thermal denaturation temperature, carotenoid extraction and pigment spectral analysis were determined.
Table 1. Differential characteristics of strain 35a^T and related members of the genus *Methylobacterium*

Strains: 1, *M. oxalidis* sp. nov. 35a^T; 2, *M. soli* YIM 48816, (data from Cao et al., 2011); 3, *M. iners* 5317S-33^T (Weon et al., 2008); 4, *M. jeotgali* S2R03-9^T (Aslam et al., 2007); 5, *M. organophilum* JCM 2833^T (Kato et al., 2005); 6, *M. marchantiae* JTI^T (Schauer et al., 2011); 7, *M. cerastii* C15^T (Wellner et al., 2012); 8, *M. bulcatum* F3.2^T (Hoppe et al., 2011); 9, *M. gossypiicola* Gh-105^T (Madhaiyan et al., 2012); 10, *M. phyllosphaerae* CBMB27^T (Madhaiyan et al., 2009); 11, *M. platani* PMB02^T (Kang et al., 2007).

+ , Positive; −, negative; (+), weakly positive; NA, data not available; v, variable reaction.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colony pigmentation</td>
<td>Phyllosphere of Oxalis corniculata L.</td>
<td>Pink</td>
<td>Pink</td>
<td>Pink</td>
<td>Non-pigmented</td>
<td>Pink</td>
<td>Red</td>
<td>Pinkish</td>
<td>Red</td>
<td>Light pink</td>
<td>Pink</td>
</tr>
<tr>
<td>Growth on/at:</td>
<td>Peptone-rich media</td>
<td>+</td>
<td>+</td>
<td>−<sup>*</sup></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>35 °C</td>
<td>+</td>
<td>+</td>
<td>−<sup>*</sup></td>
<td>+/<sup>−</sup>*</td>
<td>+*</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>2 % NaCl</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>(+)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>−</td>
<td>−/<sup>−</sup>/*</td>
<td>−<sup>*</sup></td>
<td>+*</td>
<td>−</td>
<td>(+)</td>
<td>NA</td>
<td>−</td>
<td>−</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Utilization of:</td>
<td>d-Glucose</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>(+)</td>
</tr>
<tr>
<td></td>
<td>Methylamine</td>
<td>−</td>
<td>(+)*</td>
<td>−<sup>*</sup></td>
<td>(+)*</td>
<td>+*</td>
<td>−</td>
<td>−</td>
<td>NA</td>
<td>−</td>
<td>(+)</td>
</tr>
<tr>
<td></td>
<td>d-Fructose</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>l-Arabinose</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>d-Xylose</td>
<td>−</td>
<td>−</td>
<td>NA</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>NA</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>Citrate</td>
<td>−</td>
<td>NA</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>(+)</td>
<td>−</td>
<td>−</td>
<td>V</td>
<td>+</td>
</tr>
<tr>
<td>Hydroxy fatty acids (% of total):</td>
<td>C<sub>16:0</sub> 2-OH</td>
<td>−</td>
<td>−</td>
<td>1.2</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>iso-C<sub>17:0</sub> 3-OH</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>C<sub>18:0</sub> 3-OH</td>
<td>1.8</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>2.5</td>
<td>−</td>
<td>−</td>
<td>0.9</td>
<td>−</td>
<td>0.9</td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>70.2</td>
<td>66.2</td>
<td>68.0</td>
<td>64.9</td>
<td>69.6</td>
<td>68.0</td>
<td>NA</td>
<td>67.1</td>
<td>64.2</td>
<td>66.8</td>
<td>68.5</td>
</tr>
</tbody>
</table>

Data from this study.
according to Sahin et al. (2008). A siderophore assay was performed according to the published method of Schwyn & Neilands (1987). Methylobacteria oxidize methanol to formaldehyde through methanol dehydrogenase (MDH). MDH is a pyrroloquinoline quinone (PQQ)-linked enzyme. It plays an essential role in the first step of methanol oxidation by converting methanol to formaldehyde. In addition, PQQ has a favourable effect on plant growth (Duine & Frank, 1990; Choi et al., 2008). Also, pink-pigmented methylobacteria have been found to be good hopanoid producers (Knani et al., 1994). PQQ content in a 13 day culture in methanol medium was measured by HPLC [column, μBondasphere, 5μm, C18, 300Å (Waters); flow rate, 0.3 ml min⁻¹; temperature, 40 °C; isocratic elution with 10 % (v/v) methanol and 90 % (v/v) 6:4 mixture of 100 mM ammonium acetate and 100 mM acetic acid; detection, fluorescence (excitation 360 nm and emission 480 nm)]. Auxin (indole acetate) was measured as reported by Glickmann & Dessaux, 1995).

On the basis of the results described above, strain 35aT represents a novel species within the genus Methylobacterium, for which the name Methylobacterium oxalidis sp. nov., is proposed.

Description of Methylobacterium oxalidis sp. nov.

Methylobacterium oxalidis [o.xa’li.dis. L. n. oxal-is -idis, a sorrel, and also a scientific generic name (Oxalis); L. gen. n. oxalidis of a sorrel Oxalis corniculata, referring to the leaves from which the type strain was isolated].

Cells are Gram-reaction-negative, motile rods (1.3 × 1.8 μm), and are strictly aerobic. Colonies are pink, convex and translucent with regular edges, slow-growing and 0.4 mm in diameter after 5 days on R2A agar plates at 28 °C. Growth occurs at 28–35 °C, but not at 37 °C. Nitrate is not reduced to nitrite. Oxidase-negative and catalase-positive; additional characteristics are given in Table 1. The following substrates are negative: D-fructose, C. Growth and urease tests are negative. Absorbance spectra of the pigment extracts utilized as sole carbon sources. DNase and urease tests are negative. Absorbance spectra of the pigment extracts of a sorrel Oxalis corniculata, referring to the leaves from which the type strain was isolated.

The type strain, 35aT (DSM 24028T =NBRC 107715T), was isolated from the leaves of Oxalis corniculata. The DNA G+C content of the type strain is 70.2 mol% (Tm method).

Acknowledgements

This work was supported by a Japan Science and Technology Agency grant of Research for Promoting Technological Seeds, and grants from Sekisui Chemical Co. and Institute of Fermentation, Osaka (IFO). We wish to thank Ms. Y Fujitani for excellent technical assistance and Dr T. Enomoto for plant identification.

References

