Corynebacterium deserti sp. nov., isolated from desert sand

Zhengfu Zhou,1 Menglong Yuan,1,2 Ran Tang,1 Ming Chen,1 Min Lin1 and Wei Zhang1

1Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
2College of Life Sciences, Beijing Normal University, 100875 Beijing, PR China

A novel coryneform bacterium, designated strain GIMN1.010T, was isolated from a sand sample collected in the desert in the west of China. Cells were Gram-stain-positive, non-spore-forming, catalase-positive, irregular rods. Comparative 16S rRNA gene sequence analysis demonstrated that strain GIMN1.010T belonged to the genus Corynebacterium and was related closely to Corynebacterium glutamicum ATCC 13032T (98.4 % similarity). However, the level of DNA–DNA relatedness between strain GIMN1.010T and C. glutamicum ATCC 13032T was only 22.4 ± 1.72 %, showing that strain GIMN1.010T represented a genomic species distinct from C. glutamicum. On the basis of phenotypic and phylogenetic data, strain GIMN1.010T is considered to represent a novel species of the genus Corynebacterium, for which the name Corynebacterium deserti sp. nov. is proposed. The type strain is GIMN1.010T (=CCTCC AB 2010341T =NRRL B-59552).

The genus Corynebacterium was created by Lehmann and Neumann in 1896 and represents a major group of rod-shaped bacteria within the Gram-positive, high-G+C content Actinobacteria (Collins & Cummins, 1986; Liebl, 1992). At the time of writing, the genus comprises over 100 recognized species, many of which have been described since 2000. The recognition of large numbers of novel species in recent years has been made possible by the use of improved taxonomic methods, such as chemotaxonomic and molecular-based approaches, especially 16S rRNA gene sequencing. Corynebacteria have been isolated from a wide range of environments. Most described species of the genus Corynebacterium were isolated from clinical samples and animals, but some non-clinical species have been isolated from soil or plant sources. Here, we have characterized a novel Corynebacterium-like organism from a sand sample from the desert in the west of China. On the basis of both phenotypic and molecular genetic criteria, we consider this to represent a novel species of the genus Corynebacterium.

Strain GIMN1.010T was isolated from a mixed sand sample from the desert of western China. It was enriched in TGY medium (0.5 % peptone, 0.5 % yeast extract, 0.1 % glucose; pH adjusted to 6.8 prior to autoclaving) at 30 °C with shaking at 200 r.p.m. for 2 days, followed by isolation of lemon yellow colony-forming bacteria on TGY agar plates (TGY medium with 1.5 % agar). The strain was cultivated aerobically at 30 °C for 24–48 h. Cells for biochemical and molecular systematic analysis were grown in shaken flasks (about 150 r.p.m.) of TGY medium broth. Stock cultures were maintained at 4 °C, by using modified TGY (1.0 % peptone, 0.5 % yeast extract, 0.1 % glucose, pH adjusted to 6.8 prior to autoclaving), and as glycerol suspensions (20 %, v/v) at −80 °C. Gram staining was carried out by using a modification of the method described by Cowan et al. (2003). Physiological characterization and additional biochemical tests were performed at the Institute of Microbiology, Guangdong Province, China. Isoprenoid quinones were extracted with chloroform/methanol (2:1, v/v), evaporated under vacuum and re-extracted in n-hexane/water (1:1, v/v). The crude n-hexane-quinone solution was purified using Sep-Pak Vac silica cartridges (Waters) and subsequently analysed by HPLC as described by Hiraishi et al. (1996). Cellular fatty acids were determined for strains grown on TGY medium at 30 °C for 3 days. Fatty acid methyl esters were prepared according to Kämpfer & Kroppenstedt (1996) by using the classical method of the Sherlock Microbial Identification System version 6.1 (MIDI) and were analysed by GC (6890; Hewlett Packard) using the Microbial Identification standard MIS database TSBA6. Polar lipids, extracted from freeze-dried biomass of strain GIMN1.010T, were examined by two-dimensional TLC and were identified according to the procedures of Minnikin et al. (1984). The presence of mycolic acids was determined by the TLC method of Minnikin et al. (1980).
Genomic DNA of strain GIMN1.010T was extracted by using a TIANamp bacterial DNA kit (Tiangen), according to the manufacturer’s instructions. The 16S rRNA gene was amplified by PCR with bacterial universal primers F27 and R1492, which were adapted from primers fD1 and rP1 (Weisburg et al., 1991), and then ligated into the pGEM-T vector (Promega), followed by sequencing by Takala Co. (Dalian, China). Multiple alignments with sequences of a broad selection of actinobacteria and calculations of levels of 16S RNA gene sequence similarity were carried out by using MEGA version 4 (Tamura et al., 2007). Phylogenetic dendrograms, which showed slightly different topologies, were reconstructed by the neighbour-joining (Saitou & Nei, 1987) and maximum-parsimony methods (Felsenstein, 1985) with bootstrap values based on 1000 resamplings. The DNA G+C content was measured by the thermal denaturation method (Marmur & Doty, 1962) and was calculated by using the equation of Owen & Lapage (1976). DNA–DNA hybridization studies were carried out by using the fluorometric microdilution plate method (Yuan et al., 2009).

Cells of strain GIMN1.010T were Gram-stain-positive, non-spore-forming, irregular short rods. On TGY agar, colonies were lemon yellow, circular, opaque, convex with regular edges and approximately 0.5 mm in diameter after 24 h at 30 °C. The isolate was catalase- and urease-positive, but oxidase- and tyrosinase-negative. Furthermore, it was negative for nitrate reduction and the Voges–Proskauer test. Strain GIMN1.010T was able to utilize a number of substrates (such as glucose, D-xylose, sucrose and salicin) as sole carbon sources for growth, but not gelatin or casein. The optimum pH and cultivation temperature for growth were pH 7 and 30 °C. HPLC analysis of the respiratory quinones showed that strain GIMN1.010T possessed menaquinones MK9 (H2) (66.04 %) and MK8 (H2) (27.13 %) as predominant components. Cellular fatty acids found in strain GIMN1.010T were straight-chain saturated components, namely C16:0 (45.5 %), C18:0 (0.51 %), C14:0 (0.73 %), 10-methyl C18:0 (0.45 %) and C16:0 3-OH (0.36 %), and monounsaturated fatty acids, namely C18:1ω9c (51.96 %) and C16:1ω9c (0.48 %). The strain was found to contain mycolic acids. Analysis of cell membrane polar lipids revealed the presence of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and several glycolipids. The DNA G+C content of strain GIMN1.010T was 61.7 mol %. These characteristics matched well with the description of the genus Corynebacterium.

The 16S rRNA gene sequence of strain GIMN1.010T determined in this study was a continuous stretch of 1478 bp. A phylogenetic tree of Corynebacterium 16S rRNA gene sequences was reconstructed by using the neighbour-joining method of Saitou & Nei (1987) with CLUSTAL W (version 1.81) and MEGA (version 3.1, Kumar et al., 2004). For the neighbour-joining analysis, a distance matrix was calculated according to Kimura’s two-parameter correction model. The minimum-evolution and maximum-parsimony methods were also used for tree reconstruction. Fig. 1 shows the close phylogenetic association of strain GIMN1.010T with the type strains of some recognized species of the genus Corynebacterium.

![Fig. 1. Unrooted neighbour-joining tree reconstructed from Corynebacterium 16S rRNA gene sequences (1478 bp), showing the phylogenetic relationship between strain GIMN1.010T and the type strains of recognized species of the genus Corynebacterium. Gordonia amarae DSM 43392T was used as the outgroup. Bootstrap values (expressed as percentages of 1000 replications) greater than 50 % are given at nodes. GenBank sequence accession numbers are given in parentheses. Branches marked with an asterisk were also conserved in the trees generated with the minimum-evolution and maximum-parsimony methods. Bar, 0.01 substitutions per nucleotide position.](https://www.microbiologyresearch.org/content/62/1/792)
Strain GIMN1.010T shared highest 16S rRNA gene sequence similarity (98.4%) with Corynebacterium glutamicum ATCC 13032T, but the mean (±SD) level of DNA–DNA relatedness between the two was 22.4 ± 1.72%. The latter value is well below the 70% cut-off point for species classification, as recommended by Wayne et al. (1987), thus confirming that the isolated strain represents a novel species of the genus Corynebacterium. The chemotaxonomic characteristics of strain GIMN1.010T were in agreement with the results of the phylogenetic inference, confirming that the novel bacterium belongs to the genus Corynebacterium. However, strain GIMN1.010T clearly differed from related species in terms of physiological and biochemical characteristics (Table 1). These results strongly suggest that strain GIMN1.010T represents a genetically distinct species, for which we propose the name Corynebacterium deserti sp. nov.

**Description of Corynebacterium deserti sp. nov.**

*Corynebacterium deserti* (des.er’ti. L. gen. n. deserti referring to the isolation of the type strain from desert).

Cells are aerobic, Gram-stain-positive, non-spore-forming, irregular rods. Colonies on TGY agar medium are moderately lemon yellow, circular, entire, opaque, convex with regular edges and approximately 0.5 mm in diameter after 24 h at 30 °C. Optimum growth temperature is 30 °C. Optimum growth occurs at pH 7.0. Positive for catalase and urease, but negative for oxidase. Nitrate reduction, gelatin liquefaction, casein hydrolysis and the Voges–Proskauer test are negative. Utilizes glucose, sucrose, xylose, trehalose and salicin as sole carbon sources, but not lactose, raffinose, D-arabinose, fructose, mannose, malto or L-tyrosine. The predominant menaquinones are MK9 (H2) and MK8 (H2). Contains straight-chain saturated fatty acids (C16:0, C18:0, C14:0, 10-methyl C18:0 and C16:0 3-OH) and monounsaturated fatty acids (C18:1 ω9c and C16:1 ω9c). Polar lipids are diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and several glycolipids. The DNA G+C content of the type strain is 61.7 mol%. Mycolic acids are present. The type strain, GIMN1.010T (≡ CCTCC AB 2010341T = NRRL B-59552), was isolated from a sand sample from the desert in the west of China.

**Acknowledgements**

This research was supported by the Ministry of Science and Technology of China (National Basic Research Program 2007CB707805 and National High-Tech Program 2007AA021305, 2006AA02Z229 and 2006AA020101) and the National Natural Science Foundation of China (grant no. 30670050).

**References**


**Table 1.** Characteristics that differentiate strain GIMN1.010T from its closest phylogenetic relatives in the genus Corynebacterium

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate reduction</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Urease</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Carbon utilization</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fructose</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mannose</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Maltose</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Trehalose</td>
<td>w</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Xylose</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Salicin</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Raffinose</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>DNA G+C content (mol%)*</td>
<td>61.7</td>
<td>54.6</td>
<td>53.6</td>
</tr>
</tbody>
</table>

*DNA G+C content of the reference strains taken from Liebl et al. (1991).*


