Hasllibacter halocynthiae gen. nov., sp. nov., a nutriacholic acid-producing bacterium isolated from the marine ascidian Halocynthia roretzi

Sung Hun Kim,1,2 Hyun Ok Yang,1 Yun Kyung Shin3 and Hak Cheol Kwon1

1Korea Institute of Science and Technology, Gangneung, Gangwondo, 210-340, Republic of Korea
2Division of Applied Marine Biotechnology and Engineering, Faculty of Marine Bioscience and Technology, Gangneung-Wonju National University, Gangneung, 210-702, Republic of Korea
3Aquaculture Management Division, National Fisheries Research and Development Institute, Busan 619-705, Republic of Korea

A Gram-negative, aerobic, ovoid to rod-shaped bacterial strain, KME 002T was isolated from a marine ascidian, Halocynthia roretzi, off the coast of Gangneung, Korea. Phylogenetic analyses based on 16S rRNA gene sequences showed that this strain belonged to the family Rhodobacteraceae in the class Alphaproteobacteria and was closely related to the type strains of Dinoroseobacter shibae, Roseovarius crassostreae and Pseudoruegeria aquimarins with 95.0, 94.7 and 94.5 % 16S rRNA gene sequence similarities, respectively. KME 002T was an obligately halophilic bacterium requiring 1 to 5 % (w/v) NaCl, with an absolute requirement for magnesium chloride for growth. Cells were motile by means of a single polar flagellum and showed budding fission. The predominant cellular fatty acid of the isolate was C18:1o7c and Q-10 was the major ubiquinone. The DNA G+C content of the strain was 71.6 mol%. The major secondary metabolites from cultures in liquid medium were cholic acid derivatives, including 3α,12α-dihydroxy-7-ketocholanic acid, 12-hydroxy-3-keto-glycocholanic acid, nutriacholic acid and deoxycholic acid. These characteristics determined in this polyphasic study suggest that strain KME 002T represents a novel species in a new genus of the family Rhodobacteraceae. The name Hasllibacter halocynthiae gen. nov., sp. nov. is proposed for this isolate, and the type strain is KME 002T (=JCM 16214T=KCCM 90082T).

The family Rhodobacteraceae within the class Alphaproteobacteria is one of the most abundant marine bacterial groups. It is divided into four subgroups based on phylogenetic analysis of 16S rRNA gene sequences. One of these groups is known as the marine alpha group or the Roseobacter group (González & Moran, 1997; Macián et al., 2005a). A number of bacteria belonging to the Roseobacter clade have important roles in the carbon, sulfur and nitrogen cycles in the ocean (González et al., 1999, 2000; Macián et al., 2005a). They have been isolated from various marine environments, such as seawater, seaweed, sediment, microalgae, invertebrates, vertebrates, polar sea ice, hypersaline microbial mats and coastal biofilms (Giovannoni & Rappe, 2000; Selje et al., 2004; Buchan et al., 2005; Brinhoff et al., 2008). Their defining characteristics include phototrophy, aerobic sulfite oxidation, organic sulfur compound degradation, methylo trophicity, gas vacuole formation, poly-β-hydroxybutyrate granules and rosette formation (Arahal et al., 2005; Buchan et al., 2005; Choi et al., 2007). In addition to the biodiversity of the Roseobacter clade, this group produces diverse biologically active secondary metabolites. For example, Loktanella sp. BIO-204 and Dinoroseobacter shibae DFL 27 produce (4R,5Z)-dodec-5-en-4-olide, known as buibuilactone, a pheromone of several scarab beetles (Dickschat et al., 2005). Phaeobacter species isolated from the German Wadden Sea produce the antibiotic tropodithietic acid, which has strong inhibitory properties against various marine bacteria and algae (Brinkhoff et al., 2004; Rao et al., 2005). Strains of Oceanibulbus indolifex produce several indole derivatives, the antibiotic tryptanthrin and cyclic dipeptides, which have mild antiviral and antibiotic properties (Wagner-Döbler et al., 2004).

To investigate the chemical potential of microbes in marine environments, we analysed the microbial diversity associated with marine invertebrates and their production of secondary metabolites. We isolated a novel nutriacholic...
acid-producing Gram-negative bacterium, strain KME 002T, isolated from an edible ascidian, *Halocynthia roretzi*. NCBI nucleotide BLAST searches using the 16S rRNA gene sequence of the cultured bacterium revealed that the isolate has a close phylogenetic affiliation with members of the family *Rhodobacteraceae*. It was most closely related to the type strains of *Dinoroseobacter shibae*, *Roseovarius crassotreae* and *Pseudorugeria aquimaris*, with 16S rRNA gene sequence similarities of 95.0, 94.7 and 94.5 \%, respectively. Analysis of bioactive secondary metabolites in liquid cultures of strain KME 002T led to the isolation of 3,12-dihydroxy-7-ketocholanic acid, 12-hydroxy-3-keto-glycocholic acid, nutriacholic acid and deoxycholic acid (Fig. 1). Cholic acid is a major bile acid produced by mammalian liver cells. Currently, only 11 bacterial strains of the genera *Streptococcus*, *Myroides*, *Dokdonia*, *Polaribacter*, *Donghaea*, *Maribacter*, *Hahella*, *Rhodococcus* and *Psychrobacter* have been reported to produce bile acids. Bile acids produced by these 11 strains include cholic acid, deoxycholic acid, glycocholic acid, glycdeoxycholic acid, cholic acid methyl ester, 3-dimethoxy-12\(\alpha \)-hydroxycholanic acid (assumed to be an artefact), 3-dimethoxy-7-ketocholanic acid, 12\(\alpha \)-hydroxy-3-keto-glycocholic acid, 12\(\alpha \)-hydroxy-3-keto-cholanic acid, 12\(\alpha \)-hydroxy-3,7-diketocholanic acid, 3\(\alpha \),12\(\alpha \)-dihydroxy-7-ketocholanic acid, 7\(\alpha \),12\(\alpha \)-dihydroxy-3-ketocholanic acid and 3\(\alpha \),12\(\alpha \)-dihydroxycholanic acid (Park et al., 1995; Manerat et al., 2005; Kim et al., 2007, 2010; Li et al., 2009). However, nutriacholic acid-producing bacteria have not yet been described. In this paper, we describe the characterization of this nutriacholic acid-producing bacterium, strain KME 002T, using a polyphasic approach.

Strain KME 002T was isolated from the tissue of a marine ascidian, *Halocynthia roretzi*, collected at a depth of 15 m (water temperature 17 \textdegree C) off the coast of Gangneung, Korea, in June 2007. Following collection, the ascidian was washed with autoclaved seawater. Its incumbent and excurrent siphon tissues were finely cut and diluted with autoclaved seawater in a 10:1 ratio and 100 \(\mu \)l was spread on an A1+C agar plate. The A1+C agar medium contained 10 g starch (Difco), 4 g peptone (Difco), 2 g yeast extract (Difco), 1 g calcium carbonate (Sigma-Aldrich) and 18 g agar (Difco) in 1 l filtered seawater (pH 7.0). The inoculated plate was incubated for 3 weeks at 25 \textdegree C under aerobic conditions. Each bacterial colony on the A1+C agar plate was individually cultured in A1+C liquid medium (25 ml) with shaking at 200 r.p.m. for 5 days at 25 \textdegree C. Stocks of each isolated bacterial strain were preserved in A1+C liquid culture medium containing 20 \% (v/v) glycerol at −80 \textdegree C.

Gram staining was performed according to the method described by Süßmuth et al. (1987). Colony morphology and cell motility were observed by light microscopy (Eclipse Te2000 U; Nikon). Cell shape and flagella were observed by scanning electron microscopy (model CM 20; Philips) and transmission electron microscopy (model CM 20; Philips) after negative staining with 1 \% uranyl acetate. The ability of KME 002T to grow on various media was evaluated using marine agar (MA) (Difco), A1+C agar, A1 agar (A1+C agar medium without calcium carbonate), R2A agar (Difco) and trypticase soy agar (TSA) (Difco) for 7 days at 25 \textdegree C. The requirement for and tolerance to NaCl were tested on MA plates prepared with artificial seawater containing different NaCl concentrations (0 to 8 \%, w/v; increments of 1 \%) for 7 days at 25 \textdegree C. The ability of KME 002T to grow at various temperatures was examined at 4, 7, 10, 13, 15, 20, 27, 30, 35, 37, 42 and 45 \textdegree C on A1+C agar plates. The pH growth range was evaluated in A1+C liquid medium at pH values from 4.0 to 11.0 at unit intervals. Oxidase activity was examined by oxidation of 1 \% N,N,N',N"-tetramethyl-p-phenylenediamine dihydrochloride (Sigma-Aldrich). Catalase activity was determined using a 3 \% (v/v) hydrogen peroxide solution. The assimilation of 49 sole carbon sources was determined using the API 50CH system (bioMérieux), and the utilization of additional organic substrates was investigated on seawater agar containing single carbon sources (0.2 \%). Biochemical properties and enzymic activities were examined using the API 20E and API ZYM kits (bioMérieux) according to the manufacturer’s recommendations. Bacterial isoprenoid quinones were extracted from freeze-dried biomass using chloroform/methanol (2:1, v/v) and separated by reverse-phase HPLC with a Spherisorb ODS2 5 \(\mu \)m column (250 \times 4.6 mm) according to Tamaoka (1986). To determine the fatty acid profile, KME 002T was grown on MA at 25 \textdegree C for 10 days and analysed with a Hewlett Packard 6890 series GC equipped with an HP-1 glass capillary (cross-linked methyl siloxane, 30 m \times 0.25 mm \(\times 0.25 \mu \)m) column. Fatty acids were analysed with the Microbial Identification System (MIDI; Microbial ID) (Miller, 1982), and the DNA G+C content was determined by HPLC using hydrolysate digested with PI nuclease (Katayama-Fujimura et al., 1984).

KME 002T chromosomal DNA was extracted with a G-spin genomic DNA extraction kit (iNtRON). Fragments of the

Fig. 1. Secondary metabolites isolated from strain KME 002T: (a) 3\(\alpha \),12\(\alpha \)-dihydroxy-7-ketocholanic acid; (b) 12-hydroxy-3-keto-glycocholanic acid; (c) nutriacholic acid; (d) deoxycholic acid.
16S rRNA gene were PCR-amplified using the universal primers 27F and 1492R (Lane, 1991) and purified using a PCR purification kit (Solgent). The product was purified using the Montage dye removal kit (Millipore) according to the manufacturer’s protocol. Sequencing was performed with an ABI 3730XL DNA sequencer (50 cm capillary) with an ABI PRISM BigDye terminator cycle sequencing ready reaction kit V3.1 (Applied Biosystems). The 16S rRNA gene sequence was assembled with the program BioEdit (Hall, 1999) and compared to available sequences from GenBank/DDBJ/EMBL using BLAST (Altschul et al., 1997). Pairwise nucleotide sequence similarity values were determined using the EzTaxon server 2.1 (http://www.eztaxon.org/; Chun et al., 2007). The obtained 16S rRNA sequence (1429 nt) and 30 reference sequences from GenBank were aligned using the CLUSTAL W (1.83) multiple alignment program (Thompson et al., 1994). Neighbour-joining (Saitou & Nei, 1987) and maximum-parsimony (Fitch, 1971) methods were used to construct phylogenetic trees with bootstrap values based on 1000 replicates (Felsenstein, 1985) in MEGA version 4.0 (Kumar et al., 2008). The evolutionary distance matrix for the neighbour-joining method was calculated with the Kimura two-parameter model (Kimura, 1983).

To investigate production of secondary metabolites, strain KME 002T was cultured in ten 1 l Erlenmeyer flasks containing 500 ml A1 + C liquid medium under aerobic conditions. The flasks were incubated at 25 °C for 7 days with shaking at 200 r.p.m. Secondary metabolites in the culture broth were analysed by an analytical RP HPLC using a Phenomenex Luna C18(2) analytical column (4.6 × 150 mm, 5 μm) and a linear aqueous acetonitrile (including 0.05% trifluoroacetic acid) gradient from 10 to 100% for 30 min as eluent (flow rate 0.7 ml min⁻¹) (Supplementary Fig. S1, available in IJSEM Online). The ethyl acetate extract (245.7 mg) of the liquid culture broth was fractionated and purified using a C18 RP flash column chromatography and RP prep-HPLC to obtain 3,12-dihydroxy-7-ketocholanic acid (1.4 mg), 12-hydroxy-3-keto-glycocholanic acid (0.2 mg), nutriacholic acid (0.9 mg) and deoxycholic acid (3 mg) (see Supplementary methods available in IJSEM Online). The structures of cholic acid derivatives isolated from the KME 002T liquid culture broth were determined by comparing their NMR data (Supplementary Figs S2–S7, available in IJSEM Online) with previously reported data (Li et al., 2009; Ijare et al., 2005; Bertolasi et al., 2007; Waterhous et al., 1985).

KME 002T was a Gram-negative, motile, aerobic, marine bacterium. Scanning and transmission electron microscopic observations revealed ovoid to rod-shaped cells and a single polar flagellum. Cells were 1.0–2.3 μm in length and 0.5 to 1.0 μm in width (Fig. 2). This investigation demonstrated that cells of strain KME 002T showed budding fission and irregular binary division (Fig. 2) (Nedashkovskaya et al., 2006; Labrenz et al., 1998, 1999). The budding property of the cell division was distinct, enabling the strain to be differentiated from close phylogenetic relatives in the genera Dinoroseobacter, Pseudoruegeria and Jannaschia. The morphology of colonies grown on MA plates after 5 days at 25 °C was circular, convex with clear margins, light red in colour and 0.4 to 1.3 mm in diameter. The growth temperature ranged from 13 to 35 °C, with optimal growth at 25 °C on A1 + C agar plates. Growth occurred between pH 6 and 10, with optimum growth at pH 8. The strain had a strict requirement for 1–5% NaCl (optimum of 4%). Magnesium chloride, a major inorganic component of seawater, was necessary for growth. The isolate grew on A1 + C agar, A1 agar and MA but not on R2A or TSA at 25 °C. The phenotypic and genetic characteristics of KME 002T were compared with those of its phylogenetic neighbours within the Roseobacter clade (Table 1).

Strain KME 002T differed from its relatives in that it was not able to utilize succinate as a sole carbon source. Additionally, it was not able to assimilate pyruvate or citrate, whereas its relatives assimilated pyruvate, except for Jannaschia helgolandensis Hel 10T, and citrate, except for Thalassobacter stenotrophicus CECT 5294T (Table 1). The results of the API ZYM test for this strain also differed from those of closely related strains (Table 1). Only KME 002T displayed β-glucuronidase and β-glucosidase activities, but it did not possess alkaline phosphatase activity. Analyses of the predominant isoprenoid quinones of KME 002T revealed a characteristic peak corresponding to ubiquinone Q-10, the predominant respiratory lipoquinone of members of the Alphaproteobacteria.
The major fatty acid of KME 002T was C₁₈:₁ω₇c (84.1 %) and the minor fatty acids (≥0.5 %) included the following: C₁₈:₀ (5.6 %), C₁₀:₀ 3-OH (4.3 %), C₁₉:₀ cyclo ω₈c (3.6 %), C₂₀:₁ω₇c (1.4 %), C₁₇:₀ (0.5 %) and C₁₉:₀ (0.5 %) (Supplementary Table S1, available in IJSEM Online). The major fatty acid of KME 002T, C₁₈:₁ω₇c, was the same as that of relatives within the *Rhodobactereaceae*, but KME 002T contained a higher relative level of this fatty acid.

Table 1. Phenotypic characteristics of strain KME 002T and its close phylogenetic relatives in the *Roseobacter* clade

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell shape</td>
<td>Rod to ovoid</td>
<td>Cocci, ovoid rod</td>
<td>Rod to ovoid</td>
<td>Rod</td>
<td>Rod</td>
<td>Irregular rod</td>
<td>Ovoid rod</td>
</tr>
<tr>
<td>Motility</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Colony colour</td>
<td>Light red</td>
<td>Deep wine-red</td>
<td>Pink-beige*</td>
<td>Greyish yellow</td>
<td>Dark red</td>
<td>Whitish</td>
<td>Salmon-pink/deep brown</td>
</tr>
<tr>
<td>Growth at 4 °C</td>
<td>–</td>
<td>–</td>
<td>†</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Growth at 37 °C</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Tolerance to NaCl (%)</td>
<td>1–5</td>
<td>1–7</td>
<td>1.0–1.5†</td>
<td>2‡</td>
<td>0.34–9.0</td>
<td>0.68–8.0</td>
<td>0.85–70</td>
</tr>
<tr>
<td>pH range for growth</td>
<td>6–10</td>
<td>6.2–8.9</td>
<td>6.5–8.0‡</td>
<td>7–8‡</td>
<td>7–9</td>
<td>7–8</td>
<td>ND</td>
</tr>
<tr>
<td>Assimilation of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetate</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>†</td>
</tr>
<tr>
<td>L-Arabinose</td>
<td>+</td>
<td>†</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cellobiose</td>
<td>–</td>
<td>†</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Citrate</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>W</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>D-Fructose</td>
<td>+</td>
<td>†</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Galactose</td>
<td>–</td>
<td>†</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D-Glucose</td>
<td>–</td>
<td>†</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Glycerol</td>
<td>+</td>
<td>†</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Maltose</td>
<td>–</td>
<td>†</td>
<td>–</td>
<td>+</td>
<td>W</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mannitol</td>
<td>–</td>
<td>†</td>
<td>–</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>D-Mannose</td>
<td>–</td>
<td>†</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pyruvate</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sorbitol</td>
<td>+</td>
<td>†</td>
<td>–</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Succinate</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sucrose</td>
<td>–</td>
<td>W</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Trehalose</td>
<td>–</td>
<td>†</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Enzyme activity (API ZYM):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td>–</td>
<td>+†</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lipase (C14)</td>
<td>w</td>
<td>–†</td>
<td>w</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Acid phosphatase</td>
<td>–</td>
<td>+†</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>W</td>
<td>–</td>
</tr>
<tr>
<td>Naphthol-AS-BI-</td>
<td>+</td>
<td>w†</td>
<td>–</td>
<td>W</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Phosphohydrolase</td>
<td>x-Galactosidase</td>
<td>–</td>
<td>†</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>W</td>
</tr>
<tr>
<td>β-Glucuronidase</td>
<td>+</td>
<td>†</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>α-Glucosidase</td>
<td>+</td>
<td>†</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>β-Glucosidase</td>
<td>+</td>
<td>†</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>N-Acetyl-β-glucosaminidase</td>
<td>w</td>
<td>†</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>DNA G + C content (mol%)</td>
<td>71.6</td>
<td>64.8</td>
<td>59.0</td>
<td>67.0</td>
<td>64.6</td>
<td>63.0–63.1</td>
<td>59.1</td>
</tr>
</tbody>
</table>

*Some strains of this species produce colonies with a greenish-yellow appearance.
†Data for growth at 4 °C, utilization of carbon sources and API ZYM tests were derived from our experiments.
‡Optimal values.
C_{19:0} cyclo ω8c fatty acid was present in KME 002^T but absent in its closest neighbour, *D. shibae*. The general fatty acid profile was similar to those of its relatives, but only KME 002^T had C_{19:0}, albeit in a small amount.

The fatty acid profiles of KME 002^T and its phylogenetic neighbours are described in Supplementary Table S1 (available in IJSEM Online). The 1429 nt 16S rRNA gene sequence of KME 002^T was most similar to those of *D. shibae* DFL 12^T (95 %) (Biebl et al., 2005a), *R. crassostreae* CV919-312^T (94.7 %) (Boettcher et al., 2005) and *P. aquimaris* SW-255^T (94.5 %) (Yoon et al., 2007a). A comparison of 16S rRNA gene sequences between KME 002^T and strains of related genera revealed sequence similarities ranging from 92.7 to 95.0 %: *Dinoroseobacter* (95.0 %) (Biebl et al., 2005a); *Roseovarius* (92.7 to 94.7 %) (Labrenz et al., 1999; González et al., 2003; Biebl et al., 2005b; Boettcher et al., 2005; Yoon et al., 2008; Oh et al., 2009; Wang et al., 2009, 2010; Jung et al., 2011); *Pseudoruegeria* (94.1 to 94.5 %) (Yoon et al., 2007a; Jung et al., 2010); *Jannaschia* (93.4 to 94.2 %) (Wagner-Döbler et al., 2003; Macián et al., 2005b; Choi et al., 2006; Yoon et al., 2007b; Kim et al., 2008; Yoon et al., 2010); and *Thalassobacter* (93.3 to 93.8 %) (Macián et al., 2005a; Kim et al., 2009). 16S rRNA gene-based phylogenetic analysis clustered strain KME 002^T tightly with members of the *Rhodobacteraceae*. However, KME 002^T formed an independent clade with *D. shibae* DFL 12^T within the *Roseobacter* group (Fig. 3). This phylogenetic analysis and low 16S rRNA gene sequence similarities (92.7 to 95.0 %) revealed that KME 002^T belongs to a new genus of the family *Rhodobacteraceae*. The DNA G+C content of strain KME 002^T was 71.6 mol%, a relatively high value. The DNA G+C contents of members of related genera were: 64.8 mol% in *Dinoroseobacter*; 58.3 to 66.0 mol% in *Roseovarius*; 67.0 to 73.5 mol% in *Pseudoruegeria*; 63.0 to 68.4 mol% in *Jannaschia*; and 56.0 to 59.1 mol% in *Thalassobacter*.

In our study, KME 002^T was clearly distinguishable from its phylogenetic neighbours by 16S rRNA gene phylogeny, the presence of C_{19:0} fatty acids, β-glucuronidase and β-glucosidase activities, and its inability to metabolize citrate, succinate and pyruvate. Based on these phenotypic,
chemotaxonomic and genotypic features, KME 002\(^{T}\) should be assigned to a new genus in the family Rhodobacteraceae as a representative of a novel species, \textit{Haslibacter halocynthiae} gen. nov., sp. nov.

Description of \textit{Haslibacter} gen. nov.

\textit{Haslibacter} (Has.li.bacter. N.L. n. \textit{Hasla} Haslla, ancient name of the city of Gangneung, located on the coast of the East Sea in Korea, from which the organism was collected; N.L. masc. n. \textit{bacter} rod; N.L. masc. n. \textit{Haslibacter} rod isolated from marine ascidian).

Cells are ovoid or rod-shaped. Gram-negative, aerobic and motile by a single polar flagellum. Buds may be produced. Irregular cell division may be observed. The isoprenoid quinone Q-10 is the major ubiquinone. The predominant fatty acid is C\(_{18:1}\). The genus \textit{Haslibacter} is a member of the family \textit{Rhodobacteraceae} within the class \textit{Alphaproteobacteria}. The type species is \textit{Haslibacter halocynthiae}.

Description of \textit{Haslibacter halocynthiae} sp. nov.

\textit{Haslibacter halocynthiae} (ha.lo.cyn'thi. ae N.L. gen. \textit{halocynthiae} of \textit{Halocynthia roretzi} the ascidian from which the type strain was isolated).

Gram-negative, aerobic, motile by a single polar flagellum and ovoid or rod-shaped. Budding morphology may be observed. Light red, circular, convex colonies are formed on MA, A1 + C agar and A1 agar media. NaCl and MgCl\(_2\) are necessary for growth. Grows at 13–35 °C, with optimum growth at 25 °C. Growth occurs between pH 6 and 10, with optimum growth at about pH 8. H\(_2\)S and indole are not produced. Metabolizes the following carbon sources in the API 50CH test and in additional organic substrate assimilation tests: acetate, glycerol, L-arabinose, ribose, D-xylose, L-xyllose, D-fructose, L-sorbose, inositol, sorbitol, amygdalin, aesculin, sucrose, melezitose, starch, \(\beta\)-gentiobiose, turanose, D-lyxose, D-tagatose and 5-ketogluconate. Does not utilize the following carbon sources: N-acetylglucosamine, arbutin, salicin, sucrose, succinate, pyruvate, cellobiose, maltose, lactose, melibiose, trehalose, inulin, raffinose, glycojen, xylitol, D-fucose, L-fucose, arbutin, L-arabinol, glucosone or 2-ketogluconate. Negative for arginine dihydrolase, lysozyme, oxidase, ornithine decarboxylase, urease, citrate utilization, tryptophan deaminase, acetoin production and gelatinase in the API 20E test. API ZYM tests indicate positive reactions for esterase (C4), esterase lipase (C8), leucine arylamidase, naphthol-AS-BI-phosphohydrolase, \(\beta\)-glucuronidase, \(\alpha\)-glucosidase and \(\beta\)-glucosidase activities. Weak lipase (C14), \(\beta\)-galactosidase and \(N\)-acyetyl-\(\beta\)-galactosaminidase activities are present, but negative for alkaline phosphatase, valine arylamidase, cystine arylamidase, trypsin, \(\alpha\)-chymotrypsin, acid phosphatase, \(\beta\)-galactosidase, \(\alpha\)-mannosidase and \(\alpha\)-fucosidase. Produces cholic acid derivatives as major secondary metabolites including 3,12-dihydroxy-7-ketocholanic acid, 12-hydroxy-3-keto-glycocholanic acid, nutriacholic acid and deoxycholic acid.

The type strain is KME 002\(^{T}\) (=JCM 16214\(^{T}\) = KCCM 90082\(^{T}\)), isolated from an edible marine ascidian, \textit{Halocynthia roretzi}, collected off the coast of Gangneung, in the East Sea of Korea. The DNA G+C content of the type strain is 71.6 mol%.

Acknowledgements

This study was funded by a grant from the National Fisheries Research and Development Institute (RF-2011-BT-001) and in part by the Korea Institute of Science and Technology (KIST) institutional program, grant number 2203470, Republic of Korea.

References

