Candida xylanilytica sp. nov., a xylan-degrading yeast species isolated from Thailand

Chanita Boonmak,1 Savitree Limtong,2 Sasitorn Jindamorakot,3 Somjit Am-In,3 Wichien Yongmanitchai,2 Ken-ichiro Suzuki,1 Takashi Nakase1,3 and Hiroko Kawasaki1

1NITE Biological Resource Center, Department of Biotechnology (NBRC), National Institute of Technology and Evaluation (NITE), Chiba, Japan
2Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
3Central Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand

Xylan is a major component of hemicellulose, which constitutes about 40% of plant biomass. Hydrolysis of xylan into simple sugars is one of the important steps in the conversion of lignocellulosic material to value-added products. During an investigation of cellulose- and xylan-degrading yeasts, two yeast strains that were able to use cellulose and xylan as sole carbon source were found to represent a phylogenetically distinct species in the *Spathaspora* clade. The closest species in terms of pairwise sequence similarity in the D1/D2 domain of the LSU rRNA gene was *Candida subhashii*. The novel species can be distinguished from the other species in the *Spathaspora* clade based on the ability to assimilate methanol and raffinose, growth in medium containing 60% glucose, and growth at 42 °C. It ferments glucose but not other carbohydrates. The name *Candida xylanilytica* sp. nov. is proposed for this species. The type strain is KU-Xn11T (=NBRC 106499T =BCC 34694T =CBS 11761T).

The *Spathaspora* clade was recognized by Nguyen et al. (2006) and comprised *Spathaspora arborariae*, *Spathaspora passalidarum* and five anamorphic species in the genus *Candida*. The xylose-fermenting species, *Candida lyxosophilica* and *S. arborariae*, were isolated from surface woodland soil in South Africa and rotting wood in Brazil, respectively, while *Candida jeffriesii* and *S. passalidarum* were found to associate with the gut of wood-boring beetles, *Phrenapates bennettii* in Panama and *Odontotaenius disjunctus* in Louisiana, USA (Cadete et al., 2009; Nguyen et al., 2006; van der Walt et al., 1987). The other three species of the *Spathaspora* clade do not ferment xylose. *Candida insectamans* and *Candida materiae* were found in frass of buprestid beetle larvae and rotting wood, respectively, while *Candida subhashii* was isolated from a fungal peritonitis patient in 2006 (Adam et al., 2009; Barbosa et al., 2009; van der Walt et al., 1972).

In the course of an investigation of cellulose- and xylan-degrading yeast in Thailand, two yeast strains which were able to use cellulose and xylan as sole carbon source were found to represent a novel species in the *Spathaspora* clade, based on analysis of the D1/D2 domains of the large-subunit (LSU) rRNA gene sequence. In the present study, a novel species in the genus *Candida* is described.

Strains KU-Xn11 and KU-Xn20 were isolated from decayed corn cobs and decayed grasses, respectively, at the National Corn and Sorghum Research Center, Nakhon Ratchasima, Thailand, by an enrichment technique using...
Candida xylanilytica sp. nov., a xylan-degrading yeast

xylan broth (1% oat spelt xylan, 0.67% yeast nitrogen base). The cultures were incubated on a rotary shaker at 150 r.p.m. at 25 °C for 5 days. The culture broth was spread on xylan agar (1% oat spelt xylan, 0.67% yeast nitrogen base, 2% agar) and incubated at 25 °C until yeast colonies developed. The different morphotypic colonies were purified by streaking on yeast extract/malt extract (YM) agar. Xylan and cellulose degradation was determined on xylan YM agar (1% oat spelt xylan, 0.3% yeast extract, 0.3% malt extract, 0.5% peptone, 2% agar) and carboxymethyl cellulose YM agar (1% carboxymethyl cellulose, 0.3% yeast extract, 0.3% malt extract, 0.5% peptone, 2% agar). After incubation at 25 °C for 5 days, the culture plates were stained with 0.5% (w/v) Congo red for 10 min and destained with 1N NaCl (Zhang et al., 2006). Strains KU-Xn11 and KU-Xn20 showed positive hydrolysis zones in xylan and cellulose degradation tests.

The strains were characterized morphologically, biochemically and physiologically according to the standard methods described by Yarrow (1998). Cultures grown on 5% malt extract agar, cornmeal agar, Fowell’s acetate agar, diluted vegetable juice agar (Kagome Co., Japan) and YM agar were examined for ascospore formation. Individual strains and mixed cultures were incubated at 15 °C and 25 °C for up to 1 month. Fermentation of D-xylose was determined in Durham tubes containing 2% (w/v) xylose and 0.67% yeast nitrogen base solution. After incubation at 25 °C for up to 28 days, the results were scored according to standard methods of fermentation of carbohydrates described by Yarrow (1998). Ubiquinones were extracted from intact cells cultivated in YM broth on a rotary shaker at 25 °C for 3 days. Isolation, purification and identification of ubiquinone homologues were performed according to the method described by Mikata & Yamada (1999). Genomic DNA was prepared according to the method described by Mikata & Yamada (1999). Genomic DNA was prepared according to the method described by Mikata & Yamada (1999). Genomic DNA was prepared according to the method described by Mikata & Yamada (1999). Genomic DNA was prepared according to the method described by Mikata & Yamada (1999). Genomic DNA was prepared according to the method described by Mikata & Yamada (1999). Genomic DNA was prepared according to the method described by Mikata & Yamada (1999). Genomic DNA was prepared according to the method described by Mikata & Yamada (1999).

Sequences of the D1/D2 domain of the LSU rRNA gene were determined as described by Limtong et al. (2008). The sequences were compared pairwise by BLASTN search (Altschul et al., 1997) and were aligned with sequences of related species retrieved from GenBank using the multiple alignment program CLUSTAL X version 1.83 (Thompson et al., 1997). Phylogenetic trees were reconstructed from the evolutionary distance data with Kimura’s two-parameter correction (Kimura, 1980) using the neighbour-joining method (Saitou & Nei, 1987) and by the maximum-parsimony method using the max-mini branch-and-bound algorithm of MEGA version 4 (Nei & Kumar, 2000; Tamura et al., 2007). Confidences for the phylogenetic tree were estimated from bootstrap analysis (1000 replicates) (Felsenstein, 1985).

The D1/D2 domains of the LSU rRNA gene of strains KU-Xn11 and KU-Xn20 have identical sequences which are present as two distinct copies in the genome. One copy has seven consecutive T nucleotides (copy 1, 569 nt), the other has eight T nucleotides (copy 2, 570 nt) in the same region. This may result from variability in tandem repeats of the rRNA gene. The closest species in terms of pairwise sequence similarity was Candida subhashii, with 5.6% nucleotide substitution (32 bp) and 17 indels in copy 1, and 5.8% nucleotide substitution (33 bp) and 16 indels in copy 2. The two strains showed greater than 1% nucleotide substitution in the D1/D2 domain of the LSU rRNA gene and were presumed to represent a distinct species from Candida subhashii, according to the guidelines of Kurtzman & Robnett (1998). Phylogenetic analysis based on the D1/D2 domain of the LSU rRNA gene demonstrated that the two strains formed a cluster with Candida insectamans with high bootstrap support and were related to the other known species of the Spathaspora clade (Fig. 1).

The two strains proliferated by multilateral budding and pseudohyphae were abundant (Fig. 2). The strains were negative for Diazonium blue B and urease reactions and had Q-9 as the major ubiquinone. Lipid accumulated in cells grown in 5% malt extract agar, cornmeal agar or YM agar after 5 days at 25 °C. Ascospores were not produced from individual strains or mixed culture on 5% malt extract agar, cornmeal agar, Fowell’s acetate agar, diluted vegetable juice agar or YM agar after 5 weeks at 15 °C. Xylose fermentation was absent, similar to Candida insectamans, Candida materiae and Candida subhashii. The novel strains could be distinguished from the other species of the Spathaspora clade based on the ability to assimilate methanol and raffinose, growth in medium containing 60% glucose and growth at 42 °C. Based on the data above, we concluded that the two strains represent a single novel species of the genus Candida in the Spathaspora clade, for which the name Candida xylanilytica sp. nov. is proposed.

Latin diagnosis of Candida xylanilytica Boonmak, Limtong, Jindamorakot, Am-In, Yongmanitchai, Suzuki, Nakase et Kawasaki sp. nov.

Glucosum (exiguum) fermentur at non galactosum, sucrosum, maltosum, lactosum, raffinosophum, trehalosum, cellobiosum nec D-xylosum. Glucosum, sucrosum, raffinosum (exiguum vel nullum), trehalosum, maltosum, melizitosophum, z-methyl D-glucosidum, amyllum soluble, cellobiosum, salicinum, D-xylosum, L-arabinosophum, D-ribosum, methanolium (fortasse tardum), ethanolum, glycerolum, ribitolum,
D-mannitolum, D-glucitolum, acidum DL-lacticum, acidum succinicum (lente vel nullum), acidum D-gluconicum (lente vel nullum), D-glucosaminum, N-acetyl-D-glucosaminum, 2-ketogluconicum, propanum-1,2-diolum (lente), xylanum et arbutinum assimilantur at non inulinum, melibiosum, galactosum, lactosum, L-sorbosum, L-rhamnosum, D-arabinosum, erythritolum, galactitolum, inositolum, acidum citricum, hexadecanum, xyitolum, 5-ketogluconicum, acidum D-glucuronicum, arabinitolum, D-glucono-1,5-lactonum, acidum D-galacturonicum nec butanum-2,3-diolum. Ethylaminum, L-lysinum et cadaverinum assimilantur at non nitricum nec nitrocinum. Crescit sine vitaminis (exiguum). Crescit in 50 % glucosum et 60 % glucosum (exiguum). Non crescit in 0.01 % cycloheximido, 0.1 % cycloheximido nec 10 % natri chloridum/5 % glucosum. Amylum non formatur. Diazonium caeruleum B non respondens. Ureum non hydrolysatur. Maxima temperatura crescentiae: 42 °C. Proportio molaris guanini + cytosini in acido deoxyribonucleico: 38.3, 39.2 mol% (per HPLC). Ubiquinonum majus: Q-9. Typus strips KU-Xn11T (=NBRC 106499T =BCC 34694T =CBS 11761T) isolatus ex putrefacio Zea mays axis, Nakhon Ratchasima Provincia, Thailandia, conservatur in
collectione culturae in ‘NITE Biological Resource Center (NBRC)’, Kisarazu, Chiba, Japania ut NBRC 106499T, et collectione culturae in ‘BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and Biotechnology (BIOTEC)’, Pathumthani, Thailandia ut BCC 34694T, et ‘Centraalbureau voor Schimmelcultures (CBS)’, Utrecht, the Netherlands ut CBS 11761T deposita est.

Description of Candida xylanilytica Boonmak, Limtong, Jindamorakot, Am-In, Yongmanitchai, Suzuki, Nakase & Kawasaki sp. nov.

Candida xylanilytica (xy.lan.i.ly’ti.ca. N.L. n. xylanum xylan, a plant polysaccharide; Gr. adj. lutikos -ê -on able to loose, able to dissolve; N.L. fem. adj. xylanilytica hydrolysing xylan).

After growth in YM broth for 3 days at 25 °C, loose floating islets and heavy sediment are present. Cells proliferate by multilateral budding and are spheroidal, ovaloid, elliptoidal or elongate, 3.2–9.5 x 3.2–23.2 μm and occur singly, in pairs or in small clusters. Pseudomycelia are produced. After growth in YM agar for 1 month at 25 °C, streak culture is smooth, butyrous, cream–coloured and umbonate with ciliate margin. Sometimes pulvinate wrinkled colonies are obtained from smooth colonies. In Dalmau plate culture on cornmeal agar after 5 days at 25 °C, pseudomycelia are produced abundantly. Blastocendidia are formed in clusters. Ascospores are not produced from individual strains or mixed culture on 5 % malt extract agar, cornmeal agar, Fowell’s acetate agar, diluted vegetable juice agar or YM agar after 5 weeks at 15 °C. Fermentation of glucose is positive but fermentation of galactose, sucrose, maltose, lactose, raffinose, trehalose, celllobiose and xylose is negative. Glucose, sucrose, raffinose (weakly positive or negative), trehalose, maltose, melezitose, α-methyl-D-glucoside, soluble starch, celllobiose, salicin, D-xyllose, L-arabinose, D-ribose, methanol (slow), ethanol, glycerol, ribitol, D-mannitol, D-glucitol, DL-lactic acid, succinic acid (latent or negative), D-gluconic acid (latent or negative), D-glucosamine, N-acetyl-D-glucosamine, 2-ketogluconic acid, propane-1,2-diol (latent), xylen, ethylamine, L-lysine and cadaverine are assimilated, but inulin, melibiose, galactose, lactose, L-sorbose, L-rhamnose, D-arabinose, erythritol, galactitol, inositol, citric acid, hexadecane, xylitol, 5-ketogluconic acid, D-glucuronic acid, arabininitol, D-glucono-1,5-lactone, D-galacturonic acid, butane-2,3-diol, nitrate and nitrite are not assimilated. Growth in vitamin-free medium is weak. Growth at 42 °C but not at 45 °C. Growth on medium containing 0.01 % cycloheximide and medium containing 10 % NaCl and 5 % glucose is negative. Growth on medium with 50 % glucose is positive but weakly positive with 60 % glucose. Starch formation and gelatin liquefaction are negative. Tween 80 hydrolisis is positive. Diazonium blue B and urease reactions are negative. DNA G+C content is 38.3–39.2 mol%. Major ubiquinone is Q-9.

The type strain, KU-Xn11T (=NBRC 106499T =BCC 34694T =CBS 11761T), was isolated from decayed corn cobs at the National Corn and Sorghum Research Center, Nakhon Ratchasima, Thailand. A living culture of the type is deposited at the NITE Biological Resources Center (NBRC), Department of Biotechnology, National Institute of Technology and Evaluation (NITE), Chiba, Japan, as NBRC 106499T, the BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani, Thailand, as BCC 34694T, and the Centraalbureau voor Schimmelcultures, Utrecht, the Netherlands, as CBS 11761T.

Acknowledgements

This work was supported in part by the Institute for Fermentation, Osaka (IFO) fund. Special thanks go to Mr Shinya Ninomiya and Mr Atsushi Yamashita for kindly support and suggestion. Many thanks are due to the students of the laboratory of Professor Savitree Limtong for their assistance. This work was facilitated by the Joint Research Project between BIOTEC and NITE.

References

