Pseudonocardia eucalypti sp. nov., an endophytic actinobacterium with a unique knobby spore surface, isolated from roots of a native Australian eucalyptus tree

Onuma Kaewkla and Christopher M. M. Franco

Department of Medical Biotechnology, Flinders University, Bedford Park, Australia

A novel strain, designated EUM 374T, was isolated from the root of a native Australian eucalyptus tree, Eucalyptus microcarpa, and subjected to a range of morphological, phylogenetic and chemotaxonomic analyses. The strain was Gram-reaction-positive with well-developed aerial mycelia, which fragmented into rod-shaped spores that had unique knobby protrusions on the spore surface. Substrate mycelia were not present in the media used. Strain EUM 374T grew as a film on the surface of static liquid culture medium but did not grow under shaking conditions. Phylogenetic evaluation based on 16S rRNA gene sequences identified the new isolate as belonging to the family Pseudonocardiaceae with sequence similarities of 96.1 and 96.3% to Pseudonocardia acaciae GMKU095T and Pseudonocardia spinosispora LM 141T, respectively, and 93–96% sequence similarity to other members of the genus Pseudonocardia. The results of comprehensive phylogenetic analyses, including physiological and biochemical tests, differentiated strain EUM 374T from related members of the genus Pseudonocardia. Based on the phenotypic, phylogenetic and chemotaxonomic evidence, strain EUM 374T represents a novel species of the genus Pseudonocardia, for which the name Pseudonocardia eucalypti sp. nov. is proposed. The type strain is EUM 374T (=DSM 45351T =ACM 5285T).

The genus Pseudonocardia was originally proposed by Henssen (1957). Members of the genus possess type IV cell walls that are of the non-mycolate type and contain meso-diaminopimelic acid, arabinose and galactose. The major menaquinone is MK-8(H4) and phospholipids are either type PII or PIII. Members of the genus have DNA G+C contents ranging from 68 to 79 mol% and, in phylogenetic trees, form a consistent cluster within the evolutionary radiation of the family Pseudonocardiaceae (McVeigh et al., 1994; Warwick et al., 1994; Reichert et al., 1998; Lee et al., 2000). At the time of the writing, the genus contained more than 30 species with validly published names (http://www.bacterio.cict.fr/p/pseudonocardia.html). Most strains of these species were isolated from soil but some strains were isolated from a variety of sources such as coastal sediment (Liu et al., 2006), tree bark compost (Reichert et al., 1998), a gold mine (Lee et al., 2001) and from 1,4-dioxane-contaminated industrial sludge (Mahendra & Alvarez-Cohen, 2005). Recent reports have described five novel species of endophytic origin in this genus: Pseudonocardia alni, isolated from root nodules of an alder tree (Evtushenko et al., 1989; Warwick et al., 1994); Pseudonocardia oroxyli, from a surface-sterilized root of Oroxylum indicum (Gu et al., 2006); Pseudonocardia endophyta, from the inner tissue of Lobelia clavata (Chen et al., 2009); Pseudonocardia acaciae, from roots of Acacia auriculiformis (Duangmal et al., 2009) and Pseudonocardia adelaidensis, also isolated from the stem of a eucalyptus tree (Kaewkla & Franco, 2010).

Strain EUM 374T was isolated from a root of a eucalyptus tree, Eucalyptus microcarpa, during the course of research into molecular and culture-based methods of identifying endophytic actinobacteria (Coombs & Franco, 2003; Conn & Franco, 2004). In this paper we describe the morphological, physiological, chemotaxonomic and phylogenetic characteristics of this organism and propose that, based on the phenotypic and genotypic data, strain EUM 347T represents a novel species of the genus Pseudonocardia.

Samples of leaves, stems and roots were collected from a eucalyptus tree growing on the grounds of the Flinders University campus, Adelaide, South Australia, and processed within 4 h of collection. After removing the bark from the roots, the plant samples were sterilized with 70% ethanol and 6% hypochlorite for 5 min each followed by

Abbreviations: FAME, fatty acid methyl esters; SEM, scanning electron microscopy.

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain EUM 374T is FJ805426.

Three supplementary figures are available with the online version of this paper.
The nearly complete 16S rRNA gene sequence was determined by HPLC (Mesbah et al., 1989). The nearly complete 16S rRNA gene sequence was corrected manually and aligned with sequences of closely related species obtained from the GenBank database by using BLAST (Altschul et al., 1997). The results were analysed by using the CLUSTAL_X program (Thompson et al., 1997) with Streptomyces griseus NRRL-ISP 5236T as the outgroup. Phylogenetic trees were reconstructed by using the neighbour-joining (Saitou & Nei, 1987) and maximum-parsimony (Klugে & Farris, 1969) methods in MEGA version 4 (Tamura et al., 2007) software. Pairwise distances for the neighbour-joining algorithm were calculated according to the Kimura two-parameter model (Kimura, 1980) and close-neighbour interchange (search level=2, random addition=100) was applied in the maximum-parsimony analysis. The topology of the tree was evaluated by performing a bootstrap analysis (Felsenstein, 1985) based on 1000 replications.

The nearly complete 16S rRNA gene sequence of strain EUM 374T (1409 bp) was compared with 32 available sequences of species of the genus Pseudonocardia, showing sequence similarities of 93–96%. Strain EUM 374T showed the highest 16S rRNA gene sequence similarities to P. spinosisspora LM 141T (96.3%) and P. acaciae GMKU095T (96.1%). Phylogenetic analysis determined that strain EUM 374T belonged to the genus Pseudonocardia, grouping this strain with other members of the genus. The nearest phylogenetic neighbour was P. acaciae GMKU095T, which formed a distinct clade with strain EUM 347T, supported by a bootstrap value of 92%. The next closest phylogenetic neighbour was P. spinosisspora LM 141T with bootstrap support of 84% (Fig. 1 and Supplementary Fig. S1, available in IJSEM Online). A phylogenetic tree reconstructed using all 32 available sequences of species of the genus Pseudonocardia is given in Supplementary Fig. S2. DNA–DNA relatedness studies were not carried out between strain EUM 374T and its closest phylogenetic relatives as the level of 16S rRNA gene sequence similarity between them was less than 97%, the cut-off point recommended for the delineation of bacterial species (Stackebrandt & Goebel, 1994).

The genomic DNA G+C content of strain EUM 374T was 72.9 mol%, which is within the range of values typical of members of the genus Pseudonocardia (Huang et al., 2002).

Strain EUM 374T was subjected to a range of chemotaxonomic analyses. In order to quantify whole-cell fatty acid composition, cells were grown under static conditions for 14 days at 25 °C in TSB and harvested by centrifugation. Wet cells (100 mg) were saponified, methylated and extracted according to Sasser (2001) and the resultant fatty acid methyl esters (FAME) were determined by following the protocols in the MIDI system (MIDI, 1993). Isoprenoid quinones were extracted and purified using the method of Collins et al. (1977) and analyzed by reversed-phase LC–MS employing UV detection and electrospray MS. The solvent system was 2-propanol: methanol (1:1) at a flow rate of 1 ml min⁻¹. Whole cell hydrolysates were analysed for diphosphonic acid isomers (Bousfield et al., 1985) and for sugars (Hasegawa et al., 1983). Mycolic acids were determined according to Minnikin et al. (1975, 1980) and acyl cell-wall analysis was performed according to Uchida et al. (1999).

The results showed that the diphosphonic acid in whole-cell hydrolysates of strain EUM 374T was in the meso-configuration and the whole-cell sugars were arabinose and galactose. These characteristics suggested that strain EUM 374T had a type IV cell wall and belonged to the family Pseudonocardiaceae. The cell wall was of the acetyl type and did not contain mycolic acids. Strain EUM 374T contained MK-8(H₄) as the predominant menaquinone. The whole-cell fatty acid profile of EUM 374T was of the iso/anteiso-branched type and consisted of iso-C₁₅:₀ (26.68%), iso-C₁₇:₀ (21.93%), C₁₆:₀ (10.54%), C₁₇:₀₁₀⁻octenoic acid (10.38%), C₁₆:₀ fifteen-carbon acid (7.76%), C₁₇:₀ (6.59%), iso-C₁₇:₀ (4.04%), C₁₆:₁₀-methyl (1.45%), iso-C₁₄:₀ (1.31%) and anteiso-C₁₇:₀ (1.05%).

Morphological characteristics of strain EUM 374T were observed on eight different media: ISP 2, ISP 3, ISP 4, ISP 5, ISP 7, Bennett’s agar, HPDA and nutrient agar (NA) (Atlas, 1993). To determine cell and spore morphology, cultures grown on ISP 2 for 14 days were mounted on a carbon adhesive tab without using a fixing agent, gold coated and viewed by scanning electron microscopy (SEM; ETEC Autoscan).

Cells of strain EUM 374T had a morphology typical of members of the genus Pseudonocardia and possessed aerial mycelia which fragmented into zig-zag-shaped spore chains. The rod-shaped spores had a knobby surface (Supplementary Fig. S3), which is unique in members of this genus. Colony morphologies of strain EUM 374T grown on different media are given in Table 1. On the media used, substrate mycelia were not present. The colour of aerial mycelium varied from white to brownish orange and spore colour varied from white through greysish yellow and orange to greenish grey. The strain did not produce any diffusible pigment. Growth occurred in liquid media under static conditions but not under shaking conditions.
Strain EUM 374T had similar growth characteristics to its second closest phylogenetic neighbour, \textit{P. spinosispora} LM 141T; both were unable to grow under submerged conditions and did not produce substrate mycelia. On the other hand, the morphological features of these strains were different. Strain EUM 374T produced a zig-zag spore chain but \textit{P. spinosispora} LM 141T did not produce spore chains with this morphology. Strain EUM 374T was also different from its closest neighbour, \textit{P. acaciae} GMKU095T, as this type strain could grow under both static and shaking conditions and formed substrate mycelia on ISP 2 medium. Moreover, spores of both \textit{P. spinosispora} LM 141T and \textit{P. acaciae} GMKU095T had spiny surfaces, whereas strain EUM 374T displayed spores with a knobby surface (Supplementary Fig. S3). It should be noted that, to date, among the genus \textit{Pseudonocardia}, only these three species have been reported as having spores with protrusions on their surfaces.

Physiological and biochemical characterization was carried out as described by Gordon \textit{et al.} (1974) and Kurup \& Schmitt (1973). The physiological characteristics that differentiate strain EUM 374T from the type strains of the two most closely related species of the genus \textit{Pseudonocardia} (Lee \textit{et al.}, 2002; Duangmal \textit{et al.}, 2009) are displayed in Table 2. The three strains had different profiles of acid production from galactose, \textit{myo-}inositol, mannitol and sorbitol (Table 2), differed in their ability to produce hydrogen sulfide, decompose tyrosine and hydrolyse gelatin and grew at different temperature ranges. Strain EUM 374T grew at 15–37 °C, whereas \textit{P. spinosispora} LM 141T and \textit{P. acaciae} GMKU095T grew at 4–30 and 18–42 °C, respectively. Strain EUM 374T and \textit{P. acaciae} GMKU095T grew in the presence of 3 % (w/v) NaCl, whereas \textit{P. spinosispora} LM 141T did not grow under these conditions. Furthermore, strain EUM 374T could grow at pH 5–10, whereas \textit{P. acaciae} GMKU095T could only grow at pH 5–8.

Based on phenotypic and genotypic evidence, strain EUM 374T represents a novel species of the genus \textit{Pseudonocardia}, for which the name \textit{Pseudonocardia eucalypti} sp. nov. is proposed.

Description of \textit{Pseudonocardia eucalypti} sp. nov.

\textit{Pseudonocardia eucalypti} (eu.ca.lyp’ti. N.L. gen. n. eucalypti of Eucalyptus, isolated from \textit{Eucalyptus microcarpa}).

Cells are aerobic, Gram-reaction-positive, non-acid/alcohol-fast and catalase- and urease-positive. Grows at 15–37 °C

Table 1. Culture characteristics of strain EUM 374T

ISP, International \textit{Streptomyces} project. No soluble pigments or substrate mycelia were observed on any of the media tested.

<table>
<thead>
<tr>
<th>Medium</th>
<th>Growth</th>
<th>Aerial mycelium*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeast extract malt extract agar (ISP 2)</td>
<td>Good</td>
<td>Pale, grey spore</td>
</tr>
<tr>
<td>Oatmeal agar (ISP 3)</td>
<td>Moderate</td>
<td>White, fine spore</td>
</tr>
<tr>
<td>Inorganic salt starch agar (ISP 4)</td>
<td>Poor</td>
<td>Pale, yellow spore</td>
</tr>
<tr>
<td>Glycerol asparagine agar (ISP 5)</td>
<td>Moderate</td>
<td>Greyish, orange spore</td>
</tr>
<tr>
<td>Tyrosine agar (ISP 7)</td>
<td>Moderate</td>
<td>Greying, yellow spore</td>
</tr>
<tr>
<td>Bennett’s agar</td>
<td>Good</td>
<td>Greenish, grey spore</td>
</tr>
<tr>
<td>HPDA</td>
<td>Good</td>
<td>Yellowish, white spore</td>
</tr>
<tr>
<td>Nutrient agar</td>
<td>Moderate</td>
<td>Yellowish, white spore</td>
</tr>
</tbody>
</table>

*Colour determination based on Methuen Handbook of Colour (Kornerup & Wanscher, 1978).
and pH 5–10 (weakly at 37 °C and pH 5). Does not produce hydrogen sulfide. Does not produce diffusible pigment. Aerial mycelia are white on ISP 3 but produce yellowish–
greyish spores on other media and fragment to zig-zag-
shaped spore chains with rod-shaped spores that have
knobby spore surfaces. Does not produce substrate mycelia.
Grows on the surface of liquid media under static conditions
but not under shaking conditions. Acid is produced from
L-arabinose, D-fructose, D-galactose, D-glucose, D-
mannose, L-rhamnose, D-xylitol, and adonitol but not from maltose,
melezitose or sucrose. All strains were positive for catalase. Urease
production was positive for all strains but they could not hydrolyse
casein.

The type strain, EUM 374T (=DSM 45351T =ACM
5285T), is an endophytic actinobacterium isolated from
the root of a eucalyptus tree, *Eucalyptus microcarpa*, which
was collected from the grounds of the Flinders University
campus, Adelaide, South Australia. The DNA G+C
content of the type strain is 72.9 mol%.

Table 2. Characteristics that differentiate strain EUM 374T
from closely related type strains of species of the genus
Pseudonocardia

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spore surface</td>
<td>K</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Acid production from:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d-Galactose</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>myo-Inositol</td>
<td>+</td>
<td>W</td>
<td>+</td>
</tr>
<tr>
<td>d-Mannitol</td>
<td>+</td>
<td>W</td>
<td>–</td>
</tr>
<tr>
<td>d-Sorbitol</td>
<td>W</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Enzyme activity:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂S production</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Decomposition of tyrosine</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Hydrolysis of:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gelatin</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Starch</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Growth at/in:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature range (°C)</td>
<td>15–37</td>
<td>18–42</td>
<td>4–30</td>
</tr>
<tr>
<td>pH range</td>
<td>5–10</td>
<td>5–8</td>
<td>NR</td>
</tr>
<tr>
<td>37 °C</td>
<td>W</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>3% NaCl</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
</tbody>
</table>

Acknowledgements

The authors thank for Greg Kirby for his assistance with the sampling
of native plants, Daniel Jardine for menaquinone analysis and Kerry
Gascoigne for SEM visualization. We are also grateful to Max
Aravena-Roman for performing the MIDI-FAME analysis.

References

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z.,
generation of protein database search programs. *Nucleic Acids Res* 25,
3389–3402.

rapid methods of cell wall analysis as an aid in the identification of
221–236.

Chen, H. H., Qin, S., Li, J., Zhang, Y. Q., Xu, L. H., Jiang, C. L., Kim, C. J.
& Li, W. J. (2009). *Pseudonocardia endophytica* sp. nov., isolated from
the pharmaceutical plant *Labelia clavata*. *Int J Syst Evol Microbiol* 59,
559–563.

Distribution of menaquinones in actinomycetes and corynebacteria.
J Gen Microbiol 100, 221–230.

actinobacterial population in the roots of wheat (*Triticum aestivum* L.)
by terminal restriction fragment length polymorphism and sequencing

of actinobacteria from surface-sterilized wheat roots. *Appl Environ
Microbiol* 69, 5603–5608.

Duangmal, K., Thamchaipenet, A., Matsumoto, A. & Takahashi, Y.
(2009). *Pseudonocardia acaciae* sp. nov., isolated from roots of *Acacia
1491.

Ertushenko, L. I., Akimov, V. N., Dobritsa, S. V. & Taptykova, S. D.

Nocardia coeliaca, Nocardia autotrophica, and the nocardia strain. *J

oroxyli* sp. nov., a novel actinomycete isolated from surface-sterilized

chemical grouping of aerobic actinomycetes. *J Gen Appl Microbiol* 29,
319–322.

agar, a new medium for the selective isolation of soil actinomycetes.

Henssen, A. (1957). [Morphology and system of thermophilic
actinomycetes]. *Arch Mikrobiol* 26, 373–414 (in German).

Goodfellow, M. (2002). Proposal to combine the genera *Actinobispora*
and *Pseudonocardia* in an emended genus *Pseudonocardia*, and
description of *Pseudonocardia zijangensis* sp. nov. *Int J Syst Evol
Microbiol* 52, 977–982.

