Laceyella tengchongensis sp. nov., a thermophile isolated from soil of a volcano

Jing Zhang,1 Shu-Kun Tang,1 Yu-Qin Zhang,2 Li-Yan Yu,2 Hans-Peter Klenk3 and Wen-Jun Li1

1The Key Laboratory for Microbial Resources of the Ministry of Education, PR China, and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, PR China
2Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
3DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7b, D-38124 Braunschweig, Germany

A thermophilic strain, designated YIM 10002T, was isolated from a soil sample of Big Empty Volcano in Tengchong county, Yunnan province, south-west China, and a polyphasic approach was used to investigate its taxonomic position. Strain YIM 10002T formed endospores on both aerial and substrate mycelia. Whole-cell hydrolysates contained meso-diaminopimelic acid, ribose, xylose and glucose. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The predominant menaquinone was MK-9. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol mannosides, together with some unknown phospholipids. The G + C content of its genomic DNA was 48.6 mol%. All of these chemotaxonomic data together with morphological characters consistently assigned strain YIM 10002T to the genus Laceyella. 16S rRNA gene sequence analysis showed that strain YIM 10002T was most closely related to Laceyella sacchari KCTC 9790T and Laceyella putida KCTC 3666T (99.9 and 98.0% 16S rRNA gene sequence similarity, respectively). However, strain YIM 10002T showed relatively low DNA–DNA relatedness (34.0 and 39.0%, respectively) with the above strains. Therefore, strain YIM 10002T represents a novel species of the genus Laceyella, for which the name Laceyella tengchongensis sp. nov. is proposed. The type strain is YIM 10002T (=DSM 45262T = CCTCC AA 208050T).

The genus *Thermoactinomyces* was first described by Tsilinsky (1899). Lacey & Cross (1989) placed the genus *Thermoactinomyces* in the family *Bacillaceae* as the only thermoactinomycete genus (Stackebrandt & Woese, 1981). The genus was later divided into four genera: *Thermoactinomyces*, *Laceyella*, *Thermoflavimicrobium* and *Seinonella* (Yoon et al., 2005). Subsequently, two new genera, *Planifilum* and *Mechercharimyces*, were described and a new family, *Thermoactinomycetaceae*, was proposed (Hatayama et al., 2005; Matsuo et al., 2006). At the time of writing, the genus *Laceyella* comprises only two species: *Laceyella sacchari* (basonym *Thermoactinomyces sacchari* Lacey 1971) and *Laceyella putida* (basonym *Thermoactinomyces putidus* Lacey and Cross 1989) (Lacey & Vince, 1971; Lacey & Cross, 1989; Yoon et al., 2000, 2005). Members of the genus *Laceyella* are Gram-positive, aerobic, thermophilic, filamentous bacteria. Aerial and substrate mycelia are formed and sessile endospores may be produced on sporophores. The predominant menaquinone is MK-9, the major fatty acids are iso-C15 : 0 and anteiso-C15 : 0 and the DNA G + C content is 48–49 mol% (Yoon et al., 2005).

Volcanoes and hot springs, for which Tengchong county is famous, are special habitats. As part of an investigation of the diversity of thermophilic micro-organisms in these environments, strain YIM 10002T was isolated from a soil sample collected from Big Empty Volcano in Tengchong county, Yunnan province, south-west China. In this study, 2 g soil sample was suspended in 18 ml sterile water and mixed at 55 °C for 30 min. Soil particles were allowed to sediment, the liquid phase was diluted to 1 : 100 and 100 μl aliquots were spread onto the surface of isolation agar and incubated at 55 °C for a week. Strain YIM 10002T was isolated from International *Streptomyces* Project (ISP) medium 3 (Shirling & Gottlieb, 1966). The isolate was collected from a soil sample of Big Empty Volcano in Tengchong county, Yunnan province, south-west China.
maintained on ISP 3 agar slants at 4 °C and as suspensions of mycelium fragments in glycerol (20 %, v/v) at −80 °C.

Biomass for chemical and molecular studies was obtained by cultivation in ISP 3 broth in shaken flasks (about 150 r.p.m.) at 55 °C for 1 week. Cultural characteristics were determined after 1–2 weeks by methods used by the ISP (Shirling & Gottlieb, 1966). The colours of substrate and aerial mycelia and any soluble pigments produced were determined by comparison with chips from the ISCC-NBS colour charts (Kelly, 1964). Strain YIM 10002T grew well on ISP 3 agar, moderately well on Czapek’s, ISP 2 and ISP 4 agar, weakly on ISP 5 agar and not at all on nutrient agar. The aerial and substrate mycelia were white to white–yellow. No soluble pigment was produced. The morphological characteristics of strain YIM 10002T were observed by light microscopy (BH-2; Olympus) and scanning electron microscopy (JSM-5600LV; JEOL) after growth on ISP 3 agar at 55 °C for 14 days. The substrate and aerial mycelia of the isolate were well developed and formed endospores (Supplementary Fig. S1, available in IJSEM Online).

Growth of strain YIM 10002T was tested at 4, 10, 15, 20, 28, 37, 40, 45, 55, 65, 70 and 75 °C on ISP 3 agar. The pH range for growth was investigated at ISP 3 agar at pH 4.0–10.0 (at intervals of 1 pH unit) using the following buffer systems: 0.1 M citric acid/0.1 M sodium citrate (pH 4.0–5.0), 0.1 M KH2PO4/0.1 M NaOH (pH 6.0–8.0) and 0.1 M NaHCO3/0.1 M Na2CO3 (pH 9.0–10.0). The media and procedures used to determine physiological features and the carbon source utilization pattern were those described by Williams et al. (1989). Strain YIM 10002T grew well at 55 °C, but not below 28 °C or above 70 °C, showing that the strain was thermophilic, and at pH 6.0–8.0. The above morphological features of strain YIM 10002T are consistent with those of members of the genus *Laceyella* described by Yoon et al. (2005). Strain YIM 10002T could be distinguished easily from the two described *Laceyella* species by using a battery of phenotypic properties (Table 1).

Isomers of diaminopimelic acid and whole-cell sugars were analysed according to the procedures developed by Hasegawa et al. (1983). Polar lipids were extracted and examined by two-dimensional TLC and identified using procedures described by Minnikin et al. (1984). Menaquinones were extracted according to Minnikin et al. (1984) and separated by HPLC (Kroppenstedt, 1982). For fatty acid analysis, cells were collected after growth in tryptic soy broth (Difco) in shaken flasks (about 150 r.p.m.) at 55 °C for 2 days. Cellular fatty acid analysis was performed as described by Sasser (1990) using the Microbial Identification System (MIDI). Strain YIM 10002T contained meso-diaminopimelic acid as the cell-wall diamino acid and ribose, xylose and glucose as the major whole-cell sugars. The menaquinones were MK-9 (87 %) and MK-8 (13 %). The phospholipids comprised diphostatidylglycerol, phosphatidylglycerol, phosphatidyethanolamine, phosphatidylinositol, phosphatidylinositol

Table 1. Differentiating characteristics of strain YIM 10002T and its closest phylogenetic neighbours

All data were obtained in this study. +, Positive; v, variable; −, negative.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Strain YIM 10002T</th>
<th>L. sacchari DSM 43356T</th>
<th>L. putida DSM 44608T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soluble pigment</td>
<td>−</td>
<td>Yellow–brown</td>
<td>Greyish yellow</td>
</tr>
<tr>
<td>Melanin production</td>
<td>−</td>
<td>v</td>
<td>+</td>
</tr>
<tr>
<td>Gelatin liquefaction</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Temperature range for growth (°C)</td>
<td>28–70</td>
<td>35–65</td>
<td>30–65</td>
</tr>
<tr>
<td>Degradation of:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypoxanthine</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Starch</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d-Fructose</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>D-Glycine</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lactose</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>1-Lysine</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>d-Mannitol</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>1-Proline</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>1-Rhamnose</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Trehalose</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Whole-cell sugars*</td>
<td>Rib, Xyl, Glc</td>
<td>Xyl, Ara, Glc</td>
<td>Xyl, Ara, Glc</td>
</tr>
<tr>
<td>Phospholipids†</td>
<td>DPG, PE, PG, PI, PIM, PL</td>
<td>DPG, PE, PIME, PI, PIM, PL</td>
<td>DPG, PE, PG, PI, PIM, PL</td>
</tr>
<tr>
<td>Menaquinones</td>
<td>MK-9, MK-8</td>
<td>MK-9, MK-8, MK-10</td>
<td>MK-9, MK-8</td>
</tr>
</tbody>
</table>

*Ara, Arabinose; Glc, glucose; Rib, ribose; Xyl, xylose.
†DPG, Diphosphatidylglycerol; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; PIM, phosphatidylinositol mannosides; PIME, phosphatidylmonomethylethanolamine; PL, unknown phospholipid.
mannosides and some unknown phospholipids. Strain YIM 10002^T had a cellular fatty acid profile that contained major amounts of branched fatty acids and minor amounts of straight-chain and unsaturated fatty acids: iso-C_{15:0} (57.63 %), anteiso-C_{15:0} (13.79 %), iso-C_{16:0} (8.88 %), iso-C_{14:0} (7.11 %), iso-C_{17:0} (3.62 %), anteiso-C_{17:0} (1.83 %), C_{16:0} (1.61 %), iso-C_{13:0} (1.32 %), summed feature 5 (iso-C_{17:1} I and/or anteiso-C_{17:1} B; 1.16 %), C_{18:1} cis9 (1.02 %) and C_{17:0} (0.85 %) (Supplementary Table S1). On the whole, the chemotaxonomic properties for strain YIM 10002^T were consistent with those of members of the genus Laceyella (Yoon et al., 2005), but the strain differed from L. sacchari DSM 43356^T by having ribose as a whole-cell sugar (Table 1) and phosphatidylglycerol as a phospholipid (Supplementary Fig. S2). Genomic DNA was extracted and purified according to the method described by Marmur (1961) and, using the HPLC method (Mesbah et al., 1989), the DNA G+C content of strain YIM 10002^T was 48.6 mol%.

Extraction of genomic DNA and PCR amplification and sequencing of the 16S rRNA gene of strain YIM 10002^T were performed as described by Li et al. (2007). A multiple alignment with sequences most closely related to the genus Laceyella and calculations of sequence similarity were performed using EzTaxon server 2.0 (Chun et al., 2007). Phylogenetic analyses were performed using three tree-making algorithms: neighbour joining (Saitou & Nei, 1987), maximum likelihood (Felsenstein, 1981) and maximum-parsimony (Fitch, 1971). A phylogenetic tree was constructed using the neighbour-joining method of Saitou & Nei (1987), 16S rRNA gene sequences, reconstructed from evolutionary distances with the neighbour-joining algorithm (Fig. 1), strain YIM 10002^T formed a cluster with L. sacchari KCTC 9790^T and L. putida KCTC 3666^T that was supported with a high bootstrap value (99 %). The topologies of the maximum-likelihood and maximum-parsimony trees were similar to that of the neighbour-joining tree (data not shown). The results of 16S rRNA gene sequence analysis clearly demonstrated that strain YIM 10002^T was a member of the genus Laceyella. DNA–DNA relatedness between strain YIM 10002^T and L. sacchari DSM 43356^T and L. putida DSM 44608^T were 34.0 and 39.0 %, respectively, values that are far below the 70 % cut-off value recommended for the assignment of a strain to a novel genomic species (Wayne et al., 1987).

Strain YIM 10002^T exhibited morphological characteristics that were typical of the genus Laceyella and the phylogenetic data clearly linked this strain to the genus Laceyella. However, comparison of the phenotypic characteristics of strain YIM 10002^T and its closest phylogenetic neighbours revealed significant differences between them, including production of soluble pigment and melanin, degradation of hypoxanthine and starch, temperature range for growth and utilization of L-lysine and glycine. Hence, on the basis of phylogeny, DNA–DNA relatedness and chemotaxonomic and phenotypic characters, we consider that strain YIM 10002^T represents a novel species, for which the name Laceyella tengchongensis sp. nov. is proposed.

Description of Laceyella tengchongensis sp. nov.

Laceyella tengchongensis (teng.chong.en’sis. N.L. fem. adj. tengchongensis pertaining to Tengchong county, Yunnan province, south-west China, where the type strain was collected).

Gram-positive, aerobic, thermophilic, filamentous actinomycete. Substrate and aerial mycelia are well developed and form endospores (0.7–0.8 μm). Aerial and substrate mycelia are white to yellow–white. No soluble pigment is produced. Positive for gelatin liquefaction and milk peptonization and coagulation and negative for nitrate reduction and H₂S and
melanin production. Casein, hypoxanthine, gelatin and L-tyrosine are degraded, but adenine, xanthine, starch and urea are not. L-Fucose, lactose, mannitol and L-ribose are utilized as carbon sources, but D-arabinose, D-fructose, D-galactose, maltose, D-mannose, raffinose, D-ribose and D-xylene are not. L-Arginine, L-asparagine, L-cysteine, L-lysine and L-threonine are used as nitrogen sources, but adenine, glycine, L-hydroxyproline, L-proline, L-serine, L-valine and xanthine are not. The cell wall contains meso-diaminopimelic acid as the diagnostic amino acid of peptidoglycan. The whole-cell sugars are ribose, xylose and glucose. The predominant menaquinone is MK-9. The polar lipids are diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylglycerol and some unknown phospholipids. The major cellular fatty acids are iso-C_{15:0} and anteiso-C_{15:0}. The DNA G+C content of the type strain is 48.6 mol%.

The type strain is YIM 10002^T (=DSM 45262^T =CCTCC AA 208050^T), isolated from a soil sample collected from Big Empty Volcano in Tengchong county, Yunnan province, south-west China.

Acknowledgements

This research was supported by the National Basic Research Program of China (no. 2010CB833800) and Yunnan Provincial Science and Technology Department (nos 2009AC017 and 2009DA002).

References

