Fervidicoccus fontis gen. nov., sp. nov., an anaerobic, thermophilic crenarchaeote from terrestrial hot springs, and proposal of **Fervidococcaceae** fam. nov. and **Fervidococcales** ord. nov.

Anna A. Perevalova,1 Salima Kh. Bidzhieva,1 Ilya V. Kublanov,1 Kai-Uwe Hinrichs,2 Xiaolei L. Liu,2 Andrey V. Mardanov,3 Alexander V. Lebedinsky1 and Elizaveta A. Bonch-Osmolovskaya1

1Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117312 Moscow, Russia
2Department of Geosciences and MARUM Center for Marine Environmental Sciences, University of Bremen, D-28334 Bremen, Germany
3Centre ‘Bioengineering’, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/1, 117312 Moscow, Russia

Two novel thermophilic and slightly acidophilic strains, Kam940T and Kam1507b, which shared 99 % 16S rRNA gene sequence identity, were isolated from terrestrial hot springs of the Uzon caldera on the Kamchatka peninsula. Cells of both strains were non-motile, regular cocci. Growth was observed between 55 and 85 °C, with an optimum at 65–70 °C (doubling time, 6.1 h), and at pH 4.5–7.5, with optimum growth at pH 5.5–6.0. The isolates were strictly anaerobic organotrophs and grew on a narrow spectrum of energy-rich substrates, such as beef extract, gelatin, peptone, pyruvate, sucrose and yeast extract, with yields above 10^7 cells ml⁻¹. Sulfate, sulfite, thiosulfate and nitrate added as potential electron acceptors did not stimulate growth when tested with peptone. H₂ at 100 % in the gas phase inhibited growth on peptone. Glycerol dibiphytanyl glycerol tetraethers (GDGTs) with zero to four cyclopentyl rings were present in the lipid fraction of isolate Kam940T. The G+C content of the genomic DNA of strain Kam940T was 37 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolates were archaea of the phylum **Crenarchaeota**, only distantly related to the cultured members of the class **Thermoprotei** (no more than 89 % identity), and formed an independent lineage adjacent to the orders **Desulfurococcales** and **Acidilobales** and clustering only with uncultured clones from hot springs of Yellowstone National Park and Iceland as the closest relatives. On the basis of their phylogenetic position and novel phenotypic features, isolates Kam940T and Kam1507b are proposed to be assigned to a new genus and species, **Fervidicoccus fontis** gen. nov., sp. nov. The type strain of **Fervidicoccus fontis** is strain Kam940T (=DSM 19380T =VKM B-2539T). The phylogenetic data as well as phenotypic properties suggest that the novel crenarchaeotes form the basis of a new family, **Fervidococcaceae** fam. nov., and order, **Fervidococcales** ord. nov., within the class **Thermoprotei**. The **Crenarchaeota** are one of the two major phyla of the domain **Archaea**. Many crenarchaeotes have been isolated from hot marine and terrestrial environments (Huber & Stetter, 2006). The Kamchatka peninsula is an active volcanic area where many terrestrial hot springs occur. The Uzon caldera is located in the east of Kamchatka and contains numerous active hydrothermal fields with a wide variety of chemical compositions, temperature and pH (Perevalova et al., 2008). Several organotrophic, anaerobic crenarchaeotes have been isolated from hot springs of Kamchatka, including **Desulfurococcus amylolyticus**.
Acidilobus saccharovorans (Bonch-Osmolovskaya et al., 1988), Thermoproteus uzonensis (Bonch-Osmolovskaya et al., 1990b), Acidilobus acetici (Prokofeva et al., 2000), Desulfurococcus fermentans (Perevalova et al., 2005), Vulcanisaeta strains (Prokofeva et al., 2005), Desulfurococcus kamchatkensis (Kublanov et al., 2009b) and Acidilobus saccharoveros (Prokofeva et al., 2009). All these organisms are hyperthermophiles, with optimum growth temperatures around 80–92 °C. However, archaea, primarily representatives of uncultured lineages of Crenarchaeota, have also been found in terrestrial hot springs with temperatures that are too low (55–75 °C) for hyperthermophiles (Pearson et al., 2004; Huang et al., 2007; Perevalova et al., 2008). Furthermore, in situ enrichment cultures obtained in the presence of various polymeric substrates from hot springs of the Uzon caldera at temperatures of 68–77 °C demonstrated the presence of a novel group of Crenarchaeota (Kublanov et al., 2009a). Here, we report the isolation and characterization of two representatives of this novel group of Crenarchaeota that inhabit terrestrial hot springs and grow at temperatures around 70 °C.

Samples of sediment mixed with water were collected from Treshchinnyi spring (54° 29' 56.3"N 160° 00' 55.9"E) and Sery spring (54° 29' 58"N 160° 00' 50"E) in the east thermal field of the Uzon caldera. The temperature and pH at the sampling sites were 80 °C, pH 6.3 and 75 °C, pH 6.5, respectively.

For enrichment cultures, anaerobically prepared basal medium (Perevalova et al., 2005) was used supplemented with (1^{-1}) 1 mg resazurin (Sigma), 1 ml trace element solution (Pfennig & Lippert, 1966), 1 ml vitamin solution (Wolin et al., 1963) and 0.2 g yeast extract. After boiling, the medium was cooled under an atmosphere of 80% N\textsubscript{2}/20% CO\textsubscript{2} and supplemented with 0.5 g NaHCO\textsubscript{3} and 0.5 g Na\textsubscript{2}S\textsubscript{9}H\textsubscript{2}O \textsubscript{1-}, pH 6.0–6.5 (adjusted with H\textsubscript{2}SO\textsubscript{4}), and dispensed into 15 ml Hungate tubes with butyl rubber stoppers, leaving 5 ml headspace.

An aliquot (10%) of the sediment/water mixture was incubated at 70 °C with chitin (crab chitin; Bioprogress) or β-keratin (ground feathers) at 2 g L-1 and pH 6.0–6.5. After 3–5 days of incubation, organisms with regular cocoid cells were enriched. The enrichment cultures were designated Kam940T and Kam1507b. For the isolation of strain Kam940T, the basal medium with peptone (2 g L-1) was used, with the addition of 1.5% agar. Colonies were obtained in shake-tubes incubated at 60 °C after about a week. Individual colonies were picked and transferred to the same liquid medium without agar. Strain Kam1507b was isolated by the serial dilution-to-extinction method, using the basal medium with peptone. The purity of the isolates was tested by phase-contrast microscopy of cultures grown under various conditions. In pure cultures, all cells were single cocci.

Cells of both isolates were regular cocci, 1–3 μm in diameter, without flagella (Fig. 1a). Thin sections (Bonch-Osmolovskaya et al., 1990a) revealed a cell envelope consisting of the cellular membrane covered with one layer of subunits (Fig. 1b).

Growth of the novel isolates was determined by direct cell counts using phase-contrast microscopy. All growth experiments were conducted in triplicate. Both isolates were obligate anaerobes, since no growth was observed under oxic conditions, as well as under anoxic conditions when the medium was not prereduced by the addition of sodium sulfide. The organisms were extreme thermophiles, growing in the temperature range of 55–85 °C, with optimum growth at 65–70 °C, and at pH 4.5–7.0, with optimum growth at pH 5.5–6.0. No growth was observed at 53 or 89 °C or at pH 4.0 or 8.0.

The nutritional spectrum of both strains was very narrow. Strains Kam940T and Kam1507b grew by fermentation of beef extract, gelatin, peptone and yeast extract at 2 g L-1, with final yields of 5.0 \times 107–8.5 \times 107 cells ml-1. Weaker growth resulting in yields below 5.0 \times 107 cells ml-1 was observed on albumin, myagdalin, arabinose, cellulose, pyruvate, rhamnose, soy flour, sucrose and tryptone. No growth was detected on acetate, agarose, casein hydrolysate, chitin, cellulose (CM-cellulose and filter paper), dextran, glucose, fructose, fumarate, α-keratin, lactate, maltose, mannitol, methanol, pectin, xylan or H\textsubscript{2}. Both

![Fig. 1. Electron micrographs of negatively stained whole cells (a) and thin cell sections (b) of strain Kam940T. Bars, 1 μm.](image-url)
strains required yeast extract (at a concentration of 20–50 mg l⁻¹). The final yield of strain Kam940T on medium with yeast extract under optimal growth conditions was 8.4 × 10⁷ cells ml⁻¹, with a doubling time of 6.1 h. The growth products after growth on medium with sucrose, determined as described by Bonch-Osmolovskaya & Miroshnichenko (1994), were acetate, H₂ and CO₂. The ability of strain Kam940T to use electron acceptors was tested for the culture grown on peptone. Sodium thiosulfate and sodium nitrate (at 5 mM) were not reduced, whereas sodium sulfate and sodium sulfite inhibited growth. H₂ (100% in the gas phase) inhibited growth of strain Kam940T completely on peptone.

Biomass of a culture of strain Kam940T was lyophilized and used for lipid analysis. Total lipid extraction was performed using a single-phase organic solvent procedure and trans-esterified according to Pearson et al. (2004) and Zhang et al. (2006). HPLC-MS analysis of archaeal core lipids was performed at the University of Bremen, Germany, according to a modified procedure of Hopmans et al. (2000) on a Thermofinnigan LCQ Deca XP Plus ion-trap mass spectrometer coupled to an HPLC by an atmospheric pressure chemical ionization interface. The instrument conditions are described in detail by Lipp & Hinrichs (2009). The results showed that the majority (97%) of the archaeal lipids were glycerol dibiphytanyl glycerol tetraethers (GDGTs) that contained zero to four cyclopentyl rings; the remaining small proportion (3%) consisted of the diether archaeol. Of the five GDGT compounds, GDGT-0 was the most abundant (35.5%), followed by GDGT-4 (19.2%), GDGT-1 (15.8%), GDGT-3 (13.8%) and GDGT-2 (12.7%). No crenarchaeol was present in the lipid fraction.

The G+C content of the DNA of strain Kam940T was determined by the thermal denaturation method (Marmur & Doty, 1962) to be 37 mol%. 16S rRNA genes were amplified by PCR using the archaea-specific primer A8F (5'-TACGGYTACCTTGTTACGACTT-3') as the forward primer and the universal primer S-D-Bact-1492-a-A-21 (5'-TACGGYTACCTTGTTACGACTT-3') as the reverse primer (Alm et al., 1996). PCR products were sequenced using a Big Dye Terminator version 3.1 kit on an automatic ABI 3730 sequencer according to the manufacturer’s protocol (Applied Biosystems). Sequences of the 23S rRNA genes of strain Kam940T and Acidilobus saccharovorans 345-15T were obtained in the course of complete genome sequencing of these organisms in the Centre ‘Bioengineering’ RAS. New sequences were used as queries for BLAST searches at the NCBI site (http://www.ncbi.nlm.nih.gov/blast; Altschul et al., 1997) for their preliminary identification and retrieval of similar sequences. The newly determined and retrieved sequences were aligned using the MULTALIN software (http://bioinfo.genopole-toulouse.fr/multalin/) or MAFFT version 6 (http://align.genome.jp/mafft/). Pairwise evolutionary distances were calculated by using the correction of Jukes & Cantor (1969). Phylogenetic trees were reconstructed using three different algorithms implemented in the TREECONW software package version 1.3b (Van de Peer & de Wachter, 1994). Since the tree topologies were very similar in all cases, the final results are presented as the neighbour-joining trees (Saitou & Nei, 1987). Bootstrap analysis (1000 replications) was used to validate the reproducibility of the branching patterns of the trees.

Phylogenetic analysis based on 16S rRNA and 23S rRNA gene sequences placed the novel crenarchaeotes in the phylum Crenarchaeota as a novel, deep lineage adjacent to the orders Desulfurococcales and Acidilobales (Prokofeva et al., 2009) (Fig. 2). Strains Kam940T and Kam1507b formed an independent cluster together with several uncultured clones from Yellowstone National Park (USA) and Iceland (Meyer-Dombard et al., 2005; Kvist et al., 2007; Perevalova et al., 2008). Of taxa with validly published names or any other reportedly cultured organisms, none exhibited more than 89% 16S rRNA gene sequence identity to strain Kam940T or Kam1507b. On the basis of its phylogenetic position and novel phenotypic features, isolate Kam940T is proposed as the type strain of a new genus and species, Fervidicoccus fontis gen. nov., sp. nov., which forms the basis of a new family, Fervidicoccaceae fam. nov., and order, Fervidococcales ord. nov., within the class Thermoprotei of the phylum Crenarchaeota.

Environmental clones of the Fervidicoccus group have been found in terrestrial hot springs in different geographical regions with a broad range of temperatures (Meyer-Dombard et al., 2005; Kvist et al., 2007; Perevalova et al., 2008; Kublanov et al., 2009a). The phylotypes YNP_ObP_A25 and YNP_SS_F_A51, found in Obsidian Pool and Sylvan Spring (Yellowstone National Park) with temperatures around 80 °C, exhibit 94% 16S rRNA gene sequence identity to strain Kam940T, and phylotypes from the Hveragerði region (Iceland), with temperatures of 55–81 °C, Hver031N (Kvist et al., 2007) and Is6 and V4 (Perevalova et al., 2008), exhibit 92–94% 16S rRNA gene sequence identity to strain Kam940T. Furthermore, it was found that representatives of Fervidicoccus are widespread in terrestrial hot springs of the Uzon caldera with temperatures of 68–77 °C (Kublanov et al., 2009a). The environments where Fervidicoccus clones were found are characterized by low contents of sulfide (Spear et al., 2005; Sun & Armannsson, 2000; our unpublished results).

The majority of cultured crenarchaeotes are hyperthermophiles and neutrophiles. The more unusual extreme thermophiles with lower growth temperature optima are acidophiles and are predominantly aerobes or facultative anaerobes belonging to the Sulfolobales (Huber & Prangishvili, 2006). Two novel aerobic, ammonia-oxidizing crenarchaeotes described by Hatzenpichler et al. (2008) and de la Torre et al. (2008) are also (extreme) thermophiles. Thermocladium modestius and the two species of Caldisphaera are the only known obligate anaerobes among the extremely thermophilic crenarchaeotes (Itoh et al., 1998, 2003; Boyd et al., 2007). Here, we report on a novel group of crenarchaeotes that grow optimally at tempera-
tures (65–70 °C) that are below the growth range of most cultured hyperthermophilic crenarchaeotes. The adaptation of the novel group of the Crenarchaeota to moderate-temperature habitats is evidenced by the G+C contents of their 16S rRNA genes, known to correlate with the temperature growth optima of the organisms (Galtier & Lobry 1997; Kimura et al., 2006). For example, the G+C contents of the 16S rRNA genes of hyperthermophilic crenarchaeotes are higher than 66 mol% and, for comparison, that of marine non-thermophilic crenarchaeotes is around 53 mol%; extreme thermophiles have 16S rRNA gene G+C contents of 56–64 mol%. The G+C content of the 16S rRNA genes of isolates Kam940T and Kam1507b and their relatives is 62–64 mol% (Fig. 2a), which correlates with the temperature characteristics of their sources of isolation and with their temperature ranges for growth. The GDGT composition of strain Kam940T also confirms the differences from other cultured hyperthermophilic crenarchaeotes. Cultured hyperthermophilic crenarchaeotes contain mostly GDGT-4 to -6 (Pearson et al., 2008), whereas the most abundant GDGT in strain Kam940T is GDGT-0.

Considering the outlying position of the Fervidococcus group in the phylogenetic trees (Fig. 2), the presence in the 16S rRNA of specific signatures (Table 1) and phenotypic

Fig. 2. Neighbour-joining phylogenetic trees based on 16S rRNA gene sequences (a) and 23S rRNA gene sequences (b) showing the positions of strains Kam940T and Kam1507b (a) and strain Kam940T (b) (Fervidococcus fontis gen. nov., sp. nov.) within the phylum Crenarchaeota. Clusters of members of the orders Thermoproteales, Sulfolobales, Desulfurococcales and Acidilobiaceae are indicated by triangles; sequences are detailed in Supplementary Table S1, available in IJSEM Online. Bootstrap values (from 1000 trials) of 90% and above are shown. GenBank accession numbers are given in parentheses. The G+C contents of 16S rRNA genes are shown in brackets in (a). Bars, 1 substitution per 10 sequence positions.

http://ijs.sgmjournals.org/2085
properties such as the temperature range and optimum, which distinguish representatives of this group from the phylogenetically adjoining members of the *Desulfurococcales*, we propose the taxonomic status of the *Fervidicoccus* group as being at the order level. The evolutionary divergence of this group may be related to adaptation to anaerobic environments in terrestrial hot springs with temperatures of 55–70 °C.

Description of *Fervidicoccus* gen. nov.

Fervidicoccus (Fer.vi’di.cocc.ca’ceae. N.L. masc. n. *Fervidicoccus* the type genus of the family; -aceae ending to denote a family; N.L. fem. pl. n. *Fervidicoccaceae* the family of the genus *Fervidicoccus*).

Cocci. Anaerobic heterotrophs. Extreme thermophiles. Known habitats are terrestrial hot springs. The following pattern of 16S rRNA sequence signature nucleotides distinguishes the family *Fervidicoccaceae*: 34 (U), 501 : 544 (U–A), 1244 : 1293 (U–A). Members of the order *Fervidicoccales* in the class *Thermoprotei*. The type genus is *Fervidicoccus*.

Description of *Fervidicoccales ord. nov.*

Fervidicoccales (Fer.vi’di.cocc.ca’les. N.L. masc. n. *Fervidicoccus* the type genus of the order; N.L. -ales ending to denote an order; N.L. fem. pl. n. *Fervidicoccaceae* the order of the genus *Fervidicoccus*). The description is as for the family *Fervidicoccaceae*. The type genus is *Fervidicoccus*.

Acknowledgements

We are grateful to Nadezhda Kostrikina for the electron microscopy of the new isolate and to Nikolay Chernyh for determination of its DNA G+C content. We thank Chuanlin Zhang and colleagues from Department of Marine Sciences, University of Georgia, for help with lipid analysis and Tatiana Kolganova (Centre ‘Bioengineering’, RAS) for providing 16S rRNA gene sequences of the new isolates. This work was supported by the Russian Foundation for Basic Research, grant number 06-04-49045, and by the programs of the Russian Academy of Sciences ‘Molecular and Cell Biology’ and ‘Origin and Evolution of the Biosphere’ and the Federal Agency for Science and Innovations of Russia.

References

Bonch-Osmolovskaya, E. A. & Miroshnichenko, M. L. (1994). The influence of molecular hydrogen and elemental sulfur on the growth of the new isolate and to Nikolay Chernyh for determination of its DNA G+C content. We thank Chuanlin Zhang and colleagues from

