Deinococcus wulumuqiensis sp. nov., and Deinococcus xibeiensis sp. nov., isolated from radiation-polluted soil

Wei Wang,1,2 Jun Mao,2 Zhidong Zhang,2 Qiyong Tang,2 Yuqing Xie,2 Jing Zhu,2 Lixin Zhang,3 Zhiheng Liu,3 Yuhu Shi1,2 and Michael Goodfellow4

Correspondence
Yuhu Shi
xjsyh2003@yahoo.com.cn
Zhiheng Liu
zhliu@im.ac.cn
1Nanjing University of Technology, No. 5 Xinmofan Road, Nanjin 210009, PR China
2Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang Uigur Autonomous Region, PR China
3Drug Discovery Centre for TB, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, PR China
4School of Biology, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK

The taxonomic positions of two gamma- and UV-ray-resistant strains isolated from radiation-polluted soil in north-west China were determined in a polyphasic study. The organisms, designated R12T and R13T, were Gram-stain-positive, non-spore-forming cocci, which contained MK-8 as the major respiratory quinone and C16:1ω7c and C16:0 as major fatty acids. The cell walls of strains R12T and R13T contained ornithine. Phylogenetic analysis based on 16S rRNA gene sequences and DNA–DNA hybridizations showed that strains R12T and R13T are members of novel species belonging to the genus Deinococcus, with Deinococcus radiodurans DSM 20539T as the closest relative. The isolates R12T and R13T shared 97 and 97.1 % 16S rRNA gene similarity, respectively, and 29.5 and 33.3 % DNA–DNA relatedness, respectively, with D. radiodurans DSM 20539T. The DNA G+C contents of isolates R12T and R13T were 66.7 and 63.8 %, respectively. On the basis of phenotypic tests and other results, two species, Deinococcus wulumuqiensis sp. nov. (type strain R12T =CGMCC 1.8884T =NBRC 105665T) and Deinococcus xibeiensis sp. nov. (type strain R13T =CGMCC 1.8885T =NBRC 105666T), are proposed.

The genus Deinococcus was proposed by Brooks & Murray (1981) to accommodate a group of bacteria of which the most prominent characteristic is extreme resistance to UV light, gamma radiation and desiccation (Mattimore & Battista, 1996; Callegan et al., 2008; de Groot et al., 2005). The type strains of species of the genus Deinococcus form a phylogenetically diverse group in a deeply branching lineage within the Bacteria (Asker et al., 2008). Deinococci have been isolated from diverse sources, notably from arid environments such as desert soils and rocks (Hirsch et al., 2004; de Groot et al., 2005; Rainey et al., 2005, 2007; Peng et al., 2009). At the time of writing, the genus contains 39 validly described species, nearly all of which have been described in the past five years (http://www.bacterio.cict.fr/d/deinococcus.html).

The present study was designed to establish the taxonomic status of two radiation-resistant, tetrad-forming strains, designated R12T and R13T, which were isolated during a study on the bioremediation of radiation-contaminated soils in Xinjiang Province, China. The isolates were the subject of a polyphasic taxonomic study, which showed that they warranted recognition as novel species of the genus Deinococcus.

Strains R12T and R13T were isolated from a soil suspension after incubation at 30 °C for 14 days on a tryptone-glucose-yeast extract agar plate [TGY; 1 % (w/v) tryptone; 0.1 % (w/v) glucose; 0.5 % (w/v) yeast extract; 1.5 % (w/v) agar (Brim et al., 2003)]. The soil sample, which was collected from radiation-contaminated soil in the Xinjiang Uigur Autonomous Region of north-west China, had been exposed to a 60Co source at a dose rate of 0.167 kGy min⁻¹ at room temperature (1 kGy = 10⁵ rads) until it had received
a dose of 15 kGy gamma radiation. The isolates were maintained on TGY slants at 4 °C and as suspensions of cells in 20 % (v/v) glycerol at −20 °C. Biomass for the chemotaxonomic and molecular systematic studies was prepared in shake flasks of TGY broth at 30 °C for 2 days, harvested by centrifugation and washed twice in distilled water; cells for the chemical studies were freeze-dried.

Genomic DNA, extracted as described by Earl et al. (2002), was used as template for PCR-mediated amplification and sequencing following standard procedures (Rainey et al., 1997). The resultant almost complete sequences of isolates R12T and R13T (1459 and 1422 nt, respectively) were compared with 16S rRNA gene sequences from GenBank by using the BLAST program (http://www.ncbi.nlm.nih.gov/BLAST) to determine their approximate phylogenetic position. The two gene sequences were then aligned with corresponding sequences of closely related species of the genus *Deinococcus* by using CLUSTAL W software (Thompson et al., 1994). Pairwise evolutionary distances were calculated using the Kimura two-parameter model (Kimura, 1980) and phylogenetic trees were generated by using the neighbour-joining (Saitou & Nei, 1987) and maximum-parsimony (Goodman & Peche`re, 1977) tree-making algorithms from the MEGA 4.0 program (Kumar et al., 2004); this software was also used to generate bootstrap confidence values based on 1000 resamplings. The G+C content of the genomic DNA of the strains was determined by using the thermal denaturation method (Marmur & Doty, 1962) with *Escherichia coli* K-12 as control.

It can be seen from Fig. 1 that the two isolates and the type strain of *Deinococcus radiodurans* (DSM 20539T) formed a well delineated subclade in the 16S rRNA gene tree, a taxon that was supported by all of the tree-making algorithms and by a 100 % bootstrap value. Isolates R12T and R13T shared 16S rRNA gene similarities with the *D. radiodurans* strains of 97 and 97.1 %, respectively, values which corresponded to 7 and 8 nt differences. The isolates also shared a high 16S rRNA gene similarity (99 %), thereby necessitating DNA–DNA relatedness studies. The DNA G+C contents of isolates R12T and R13T were 66.7 and 63.8 %, respectively.

The levels of DNA–DNA relatedness between the three members of the *D. radiodurans* 16S rRNA gene subclade were determined by using the renaturation method (De Ley et al., 1970) and a Perkin Elmer Lambda 35UV/VIS spectrophotometer fitted with a PTP-1 peltier temperature controller. Genomic DNA preparations were sheared by ultrasonication to give a mean fragment size (300–700 bp) and the resultant samples adjusted to give an OD260 of 2.0 in 2 × SSC buffer (1 × SSC is 0.15 M sodium chloride and 0.015 M sodium citrate). Denaturation was carried out at 99 °C for 10 min and hybridization at 76 °C. Isolates R12T and R13T shared a DNA–DNA relatedness value of 58.5 % and corresponding values of 29.5 and 33.3 % with *D. radiodurans* DSM 20539T, respectively. These results indicate that the three strains belong to distinct genomic species as the relatedness values are well below the 70 % cut-off point recommended for the circumscription of bacterial species (Wayne et al., 1987).

Isolates R12T and R13T were examined for a range of diagnostic chemotaxonomic markers to determine whether or not they belonged to the genus *Deinococcus*. To this end, standard procedures were used to extract and detect the amino acid in peptidoglycan preparations (Schleifer & Kandler, 1972) and major polar lipids in whole cells (Tindall, 1990), including those of *D. radiodurans* DSM 20539T. Similarly, menaquinones extracted after Minnikin et al. (1984) were separated by HPLC (Kroppenstedt, 1982). Cellular fatty acids were extracted, methylated, separated and identified by using the Sherlock Microbial Identification System (MIDI) (Sasser, 1990).

The isolates contained L-ornithine as the diamino acid of the peptidoglycan, and MK-8 as the predominant menaquinone. The major cellular fatty acids of isolates R12T and R13T were hexadecanoic acid (C16:0) 46.4 and 54.3 %,
respectively) and hexadecanoic acid (C_{16:0} 14.5 and 21.0%, respectively). Small qualitative and quantitative differences were found in the fatty acid composition of the minor components of the two isolates, notably a higher proportion of C_{12:0}10:0c in isolate R12T compared with isolate R13T (6.7 against 2.7%), which is also predominant in \textit{D. radiodurans} DSM 20539T (Rainey et al., 2005).

Based on their staining behaviour, the polar lipid patterns of \textit{D. radiodurans} DSM 20539T and the two novel isolates consisted of various unknown glycolipids, phosphoglycolipids and polar lipids (Supplementary Figure S1, available in IJSEM Online). In all three strains, the patterns were dominated by unknown phosphoglycolipid PGL2. This is in line with previous results for species of the genus \textit{Deinococcus} (Thompson et al., 1980; Embley et al., 1987; Ferreira et al., 1997; de Groot et al., 2005; Ween et al., 2007; Callegan et al., 2008; Im et al., 2008). The organisms also contained phosphoglycolipid PGL1, glycolipids GL2 and GL3, and an unknown polar lipid, a pattern typical of other species of the genus \textit{Deinococcus} (Lai et al., 2006; Im et al., 2008; Kämper et al., 2008). However, the strains also showed differences in their polar lipid profiles which may be of diagnostic value. The two isolates lack a fifth glycolipid (GL5) compared with \textit{D. radiodurans} DSM 20539T. Isolate R13T contained a first glycolipid and, like \textit{D. radiodurans} DSM 20539T, contained a characteristic aminophospholipid. All of the strains contained a spot consisting of various unknown glycolipids, phosphoglycolipids GL2, GL3, and an unknown polar lipid, a pattern typical of other species of the genus \textit{Deinococcus} (Lai et al., 2006; Im et al., 2008; Kämper et al., 2008). However, the strains also showed differences in their polar lipid profiles which may be of diagnostic value. The two isolates lack a fifth glycolipid (GL5) compared with \textit{D. radiodurans} DSM 20539T. Isolate R13T contained a first glycolipid and, like \textit{D. radiodurans} DSM 20539T, contained a characteristic aminophospholipid. All of the strains contained a spot composed of a red pigment.

The isolates were examined for phenotypic properties known to be of value in \textit{Deinococcus} systematics. Gram staining was carried out by using a standard procedure, and cellular morphology and motility sought using light microscopy following growth on TGY agar for 3 days at 30 °C. Catalase activity was determined by assessing bubble production following the addition of 3% (v/v) H$_2$O$_2$ to colonies, and oxidase activity was determined by using 1% (v/v) tetramethyl-p-phenylenediamine. The ability of the strains to grow under different temperature and pH conditions and in the presence of NaCl was carried out using TGY medium. Single carbon source tests were carried out after Ferreira et al. (1997), and starch degradation was assessed using TGY agar as the basal medium; Lugol’s iodine was added after plates had been incubated at 30 °C for 3 days. Susceptibility to erythromycin and rifampicin at 15 μg ml$^{-1}$ was determined by using TGY agar plates that had been incubated at 30 °C for 3 days.

The novel isolates were Gram-stain-positive, non-motile, tetrad-forming cocci, which formed circular, shiny, redish-orange colonies on TGY agar. Catalase and oxidase reactions were positive. Both strains grew at 10 to 55 °C and at pH 5.0 to 12.0, but differed in their optimal growth temperatures; isolate R12T grew optimally at 37 °C and isolate R13T at 30 °C. It can be seen from Table 1 that the isolates can be readily distinguished from one another and from the type strain of \textit{D. radiodurans} by using a combination of phenotypic properties.

Table 1. Phenotypic properties separating isolates R12T and R13T from one another and from the type strain of \textit{D. radiodurans}

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature range for growth (°C)</td>
<td>10–55</td>
<td>10–55</td>
<td>ND</td>
</tr>
<tr>
<td>Optimum temperature (°C)</td>
<td>37</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>pH range for growth</td>
<td>5–12</td>
<td>5–12</td>
<td>ND</td>
</tr>
<tr>
<td>Optimum pH</td>
<td>7–8</td>
<td>7</td>
<td>ND</td>
</tr>
<tr>
<td>Growth on sole carbon sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sucrose</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Sorbitol</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Arabinose</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Maltose</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Fucose</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>d-Mannose</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Melezitose</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>d-Xylose</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Rhamnose</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Sodium citrate</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Sodium oxalate</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Starch degradation</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Susceptibility to antibiotics (15 μg ml$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rifampicin</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
</tbody>
</table>

Survival rates of the novel isolates in response to gamma and UV radiation were compared with those of \textit{D. radiodurans} DSM 20539T and \textit{E. coli} DH5α via an established procedure (Ferreira et al., 1997). Strains were grown in modified TGY broth to exponential growth phase, at which point biomass was washed with sodium chloride (0.85%, w/v), centrifuged at 4 °C and resuspended in saline (0.85%, w/v) to give a concentration of 1 x 107–108 c.f.u. ml$^{-1}$. Each suspension was divided into 2 ml aliquots and exposed to a 60Co source at a dose rate of 0.167 kGy min$^{-1}$ at room temperature; the gamma radiation doses were from zero to 20.0 kGy in steps of 2.0 kGy. Treated samples were plated onto TGY agar plates and incubated at 30 °C. Similarly, preparations were exposed to a 254 nm UV lamp for the desired dose and subsequently incubated at 30 °C. The dose was monitored by using a VLX-30 radiometer. It can be seen from Fig. 2 that the isolates and positive control, unlike the negative control, showed little decrease in per cent survival when treated with gamma radiation at 3kGy; the \textit{Deinococcus} strains also showed resistance to >10kGy. In the case of UV radiation, the \textit{Deinococcus} strains grew at the highest dosage of 746 J m$^{-2}$; in contrast, the lethal dosage for the \textit{E. coli} strain was 30 J m$^{-2}$.

It is evident from the genotypic and phenotypic data that each of the isolates represents a novel species of the genus.
Deinococcus. It is proposed that isolates R12T and R13T be given the names Deinococcus wulumuqiensis sp. nov., and Deinococcus xibeiensis sp. nov., respectively.

Description of Deinococcus wulumuqiensis sp. nov.

Deinococcus wulumuqiensis sp. nov. (wu.lu.mu.qi.en’sis. N.L. masc. adj. wulumuqi referring to Urumchi, the Chinese phoneticization for Urumchi city, where the type strain was isolated).

Aerobic, Gram-stain-positive, non-spor-forming, non-motile, tetrad-forming cocci. Reddish-orange, circular, opaque colonies (approx. 1.8–3.8 mm in diameter) are formed after incubation on TGY medium for 14 days at 37 °C. The optimal growth pH and temperature are pH 7.0–8.0 and 37 °C, respectively. L-Cystine, D-fructose, melezitose, L-leucine, L-proline, L-threonine, L-tryptophan, L-tyrosine and lactate can be utilized as sole carbon sources. Sucrose, sorbitol, galactose, fucose, mannitose, melezitose, xylose, arabinose, rhamnose, dextrin, mannotol, L-cystine, D-fructose, melezitose, L-leucine, L-proline, L-threonine, L-tryptophan, L-tyrosine, tartrate, oxalate and lactate can be utilized as sole carbon sources. Succinate, benzoate, histidine, raffinose and cellobiose cannot be utilized as sole carbon sources. Growth occurs in the presence of 1 % (w/v) NaCl. The main cellular fatty acids are C16:0, C17:0, C18:0, C18:1, C19:0, C20:0, C22:0, C24:0 (Supplementary Table S1). Gamma radiation resistant to >10 kGy, UV resistant to >700 J m⁻². The 16S rRNA gene similarity and DNA–DNA relatedness of the type strain with Deinococcus radiodurans DSM 20539T are 97.1 and 33.3 %, respectively. The DNA G+C content of the type strain is 63.8 mol%.

The type strain, isolate R13T (=CGMCC 1.8885T =NRBC 105666T), was recovered from radiation-contaminated soil collected from Xinjiang Province, China.

Acknowledgements

This research work was supported by the Hi-Tech Research and Development Program of China (grant no. 2007AA021300) and by the Chinese Ministry of Agriculture (grant no. 200803034). The authors are grateful to Professor Min Wu (College of Life Sciences, Zhejiang University) for his help with the DNA–DNA relatedness studies, and to Professor Jean Euzéby (École Nationale Vétérinaire, Toulouse, France) for help with naming the organisms.

References

de Groot, A., Chapon, V., Servent, P., Christen, R., Fischer-Le Saux, M., Sommer, S. & Heulin, T. (2005). Deinococcus deserti sp. nov. a for north-west China, where the soil sample was collected (i.e. Xinjiang Province)].

Aerobic, Gram-stain-positive, non-spor-forming, non-motile tetrad-forming cocci. Pinkish-red, circular, opaque colonies (approx. 3.2–4.5 mm in diameter) are formed after incubation on TGY medium for 14 days at 30 °C. The optimal growth pH and temperature are pH 7.0 and 30 °C. Growth occurs in the presence of 1 % (w/v) NaCl. Sucrose, sorbitol, maltose, galactose, fucose, mannotose, melitose, xylose, arabinose, rhamnose, dextrin, mannotol, L-cystine, D-fructose, melezitose, L-leucine, L-proline, L-threonine, L-tryptophan, L-tyrosine, tartrate, oxalate and lactate can be utilized as sole carbon sources. Succinate, benzoate, histidine, raffinose and cellobiose cannot be utilized as sole carbon sources. The main cellular fatty acids are C16:0, C17:0, C18:0, C18:1, C19:0, C20:0, C22:0, C24:0 (Supplementary Table S1). Gamma radiation resistant to >10 kGy, UV resistant to >700 J m⁻². The 16S rRNA gene similarity and DNA–DNA relatedness of the type strain with Deinococcus radiodurans DSM 20539T are 97.1 and 33.3 %, respectively. The DNA G+C content of the type strain is 63.8 mol%.

The type strain, isolate R13T (=CGMCC 1.8885T =NRBC 105666T), was recovered from radiation-contaminated soil collected from Xinjiang Province, China.

