Objections to the transfer of *Francisella novicida* to the subspecies rank of *Francisella tularensis*

We disagree with a recent proposal by Huber *et al.* to transfer *Francisella novicida* to the subspecies rank of *Francisella tularensis* (Huber *et al.*, 2010). We believe that the proposal is not appropriate in light of all currently available knowledge.

In 1989, Hollis *et al.* (1989) argued that *F. novicida* and *F. tularensis* could be considered to be one species as judged from DNA–DNA hybridization experiments (Hollis *et al.*, 1989). Their publication was not valid according to the requirements outlined in the Bacteriological Code (Lapage *et al.*, 1992; Tindall *et al.*, 2006). As a result, the proposed elimination of the species *F. novicida* and its demotion to a biogroup of *F. tularensis* was not included among prokaryotic names with standing in nomenclature. Notably, earlier publications considered *F. novicida* and *F. tularensis* to be separate species based on differences in phenotype including chemotaxonomic markers, distinct ecological roles, different clinical and epidemiological characteristics, and differing abilities and modes of invasion and mechanisms of tissue damage in mammals (Larsson *et al.*, 1955; Olsufiev *et al.*, 1959; Skerman *et al.*, 1980).

From a practical standpoint, separate species names are useful in a microbiological laboratory or a clinical setting and also as a basis for regulations governing the handling of medically important organisms. For example, laboratory handling of *F. tularensis* but not *F. novicida*, is associated with a high risk of airborne laboratory-acquired infection. Importantly, it is fairly easy to distinguish *F. novicida* and *F. tularensis* on the basis of their different growth and metabolic requirements on artificial media. Indeed, in Table 2 of Huber *et al.* (2010) data are provided that contradict their own proposal by presenting 11 metabolic reactions that are distinct between *F. novicida* and *F. tularensis* (Huber *et al.*, 2010).

Perhaps most importantly, recent findings from the analysis of multiple genome sequences of *F. tularensis* versus *F. novicida* have indicated that the increased host-association of *F. tularensis* is tied to evolution as a population lineage disconnected from *F. novicida*, even though genome-wide average nucleotide identities exceeded 97% (Larsson *et al.*, 2009). We propose that different population structures and otherwise disparate evolutionary patterns in *F. tularensis* and *F. novicida* should be considered as arguments for retaining separate species names. A comparison of 17 genomes of members of the genus *Francisella* has shown that the emergence of *F. tularensis*, in an evolutionary and population genetic framework, was a speciation event with no signs of reversals. For example, there were no traces of genetic exchange between *F. tularensis* and *F. novicida*. The analysis provided genetic information that was more precise than crude DNA–DNA hybridization values for defining the genetic relationships between *F. tularensis* and *F. novicida*. Recent intense efforts, including evolutionary and population criteria, have provided a useful theoretical framework for defining prokaryotic species (Achtman & Wagner, 2008; Gevers *et al.*, 2005; Koeppl *et al.*, 2008). We believe that such a framework should be taken into consideration in the taxonomy of the genus *Francisella*.

Anders Johansson,1 Jean Celli,2 Wayne Conlan,3 Karen L. Elkins,4 Mats Forsman,6 Paul S. Keim,6 Pär Larsson,4 Colin Manoil,7 Francis E. Nano,8 Jeannine M. Petersen9 and Anders Sjöstedt1

1Department of Clinical Microbiology, Umeå University, SE-901 85 Umeå, Sweden
2Tularemia Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
3National Research Council Canada, Institute for Biological Sciences, Ottawa, ON K1C 2M7, Canada
4Laboratory of Mycobacterial Diseases and Cellular Immunology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Rockville, MD 20852, USA
5Division of CBRN Defense and Security, Swedish Defense Research Agency, SE-901 82 Umeå, Sweden
6Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640, USA
7Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA
8Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
9Centers for Disease Control and Prevention, Division of Vector-Borne Infectious Diseases, Bacterial Diseases Branch, 1300 Rampart Road, CSU Foothills Campus, Fort Collins, CO 80521, USA

Correspondence: Anders Johansson (anders.johansson@clini.umu.se)


Objections to the transfer of Francisella novicida to the subspecies rank of Francisella tularensis – response to Johansson et al.

The description of novel species requires the careful selection and use of a wide variety of methodologies. As pointed out by Tindall et al. (2010), experience gained over the past six decades has continued to demonstrate the value of comparing different datasets and also of basing the description and delineation of taxa on as wide a dataset as possible. A combination of data acquired from DNA–DNA hybridization, gene sequences, genomic fingerprints and phenotyping (chemotaxonomic, physiological and morphological traits) provides a sound basis for the taxonomy of the prokaryotes (Tindall provides a sound basis for the taxonomy of physiological and morphological traits) methods (DNA–DNA hybridization, gene of data acquired from DNA-based wide a dataset as possible. A combination within the scientific demonstrate the value of comparing over the past six decades has continued to situation in 'Pubmed' (http://www.ncbi.nlm. It is argued, that:

Our proposal to transfer Francisella novicida as a novel subspecies to F. tularensis subsp. novicida is in agreement with the above-mentioned recommendations. As demonstrated by the results from DNA–DNA reassociation experiments, F. novicida is genetically close to F. tularensis (Hollis et al., 1989) and the phenotypic differences observed (Huber et al., 2010) are in agreement with the subspecies concept. Another important point supporting this taxonomic rearrangement is the acceptance of the new combination within the scientific community. The use of this not yet validated published new combination may be related to the fact that in Bergey’s Manual of Systematic Bacteriology (often erroneously considered as the ‘bible’ of bacterial systematics by those interested in bacterial taxonomy), the transfer of F. novicida to Francisella tularensis subsp. novicida was recommended in the chapter dealing with the genus Francisella (Sjöstedt, 2005).

Although this proposal was never formally recognized, numerous microbiologists are already using the name. An online search survey in ‘PubMed’ (http://www.ncbi.nlm.nih.gov/sites/entrez?db=PubMed) indicates that in recent years there is no significant difference in the frequencies of the use of the names F. novicida and F. tularensis subsp. novicida.

From our point of view, it is not consistent to have a species F. tularensis with three subspecies supported by DNA–DNA relatedness data but distinguishable by phenotypic traits and a separate species F. novicida that also shares high DNA–DNA relatedness values (>85%) but which is phenotypically distinguishable. Based on the results from the literature and the results from our investigations, but also for sake of consistency, it is obvious that our proposal to assign F. novicida to F. tularensis as a novel subspecies is well supported.

Below are some additional replies to certain arguments proposed by Johansson et al. (2010) to support their stance against the reclassification of F. novicida.

It is argued, that:

‘From a practical standpoint, separate species names are useful in a microbiological laboratory or a clinical setting and also as a basis for regulations governing the handling of medically important organisms. [...] Importantly, it is fairly easy to distinguish F. novicida and F. tularensis on the basis of their different growth and metabolic requirements on artificial media’. In contrast to tularemia caused by F. tularensis subsp. tularensis or F. tularensis subsp. holarctica, human or animal infections with strains of F. tularensis subsp. novicida are extremely rare and there are very few publications reporting the isolation of this facultative pathogen. Most of these reports have shown that it was very difficult to distinguish those isolates from strains of F. tularensis, not only for routine clinical laborat-