Muriicola jejuensis gen. nov., sp. nov., isolated from seawater

Hyung-Yeol Kahng,1† Sang-Suk Lee,2† Jeong Myeong Kim,3 Ji Young Jung,3 Mee Young Lee,4 Woojun Park5 and Che Ok Jeon3

Correspondence
Che Ok Jeon
cojeon@cau.ac.kr

1Department of Environmental Education, Sunchon National University, Sunchon 540-742, Republic of Korea
2Department of Animal Science & Technology, Sunchon National University, Sunchon 540-742, Republic of Korea
3Department of Life Science, Chung-Ang University, Seoul 156-756, Republic of Korea
4Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
5Division of Environmental Science and Ecological Engineering, Korea University, Seoul 136-701, Republic of Korea

An aerobic, yellow–orange-pigmented, Gram-staining-negative bacterium, designated strain EM44T, was isolated from seawater on the eastern coast of Jeju Island, Korea. Growth was observed at 15–35 °C (optimum 25–30 °C), pH 6.5–9.0 (optimum pH 7.0–8.5) and between 1 and 5 % NaCl (w/v) (optimum 2–4 %). Cells of strain EM44T were non-motile, straight rods and showed catalase and oxidase activities. The G+C content of the genomic DNA was 47.9 mol% and the major respiratory quinone was MK-6. The major fatty acids were iso-C15 : 0G, iso-C15 : 0, iso-C17 : 03-OH and iso-C16 : 03-OH. Strain EM44T contained phosphatidylethanolamine as a major polar phospholipid. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain EM44T fell within the family Flavobacteriaceae in the phylum Bacteroidetes and was most closely related to members of the genera Eudoraea, Zeaxanthinibacter and Robiginitalea with 92–94.5 % gene sequence similarities. On the basis of chemotaxonomic data and molecular properties, it is clear that strain EM44T represents a novel genus within the family Flavobacteriaceae, for which the name Muriicola jejuensis gen. nov., sp. nov. is proposed. The type strain of the type species is EM44T (=KCTC 22299T=DSM 21206T).

The family Flavobacteriaceae is one of the major phylogenetic lineages within the phylum Bacteroidetes (Bernardet et al., 2002) and its members have been isolated from marine habitats (Cho & Giovannoni, 2004; Bowman & Nichols, 2005; Ask et al., 2007; Manh et al., 2008; Alain et al., 2008; Yang & Cho, 2008; Nedashkovskaya et al., 2009). Cultured isolates of the family Flavobacteriaceae are known to be proficient in degrading various complex biomolecules; hence, they are considered to be important members of the bacterial community involved in metabolic activities in aquatic environments (Kirchman, 2002; Kahng et al., 2009). In the course of investigations of bacterial communities in seawater (Kahng et al., 2009; Lee et al., 2009), a novel Gram-staining-negative bacterium producing yellow–orange pigments was isolated and investigated using a polyphasic approach.

A surface seawater sample was collected from the eastern coast of Jeju Island (33° 26’ N 126° 54’ E), South Korea. The seawater temperature was 21 °C and the pH was 7.8. The seawater sample was spread on marine agar 2216 (MA; Difco) at 25 °C for 5 days. Strain EM44T was isolated and routinely grown on MA at 30 °C for 3 days under aerobic conditions, except where indicated otherwise. The strain was stored at −80 °C in marine broth (MB, Difco) supplemented with 10 % (v/v) glycerol for preservation.

Amplification and sequencing of the 16S rRNA gene of strain EM44T was performed as described by Kim et al. (2008). Briefly, a single colony of strain EM44T grown on MA was resuspended in 100 µl 5 % (w/v) Chelex-100
solution (Bio-Rad) and boiled for 10 min to prepare crude genomic DNA lysates. PCR amplification of 16S rRNA genes from the crude lysates was conducted using the universal primer F1 (5′-AGAGTTTGATCMTGCTCAG-3′) and R13 (5′-TACGGYACACCTTGTTACGACTT-3′) as described previously (Lu et al., 2006). The resulting 16S rRNA gene sequence (1487 nucleotides) was compared with available 16S rRNA gene sequences from GenBank using the BLAST program (http://www.ncbi.nlm.nih.gov/BLAST/) to determine an approximate phylogenetic affiliation and aligned with sequences of closely related members by using the CLUSTAL W software program (Thompson et al., 1994). Phylogenetic trees were constructed by using three different algorithms, neighbour-joining (NJ), maximum-likelihood (ML) and maximum-parsimony (MP) available in the PHYLIP software, version 3.6 (Felsenstein, 2002). Resulting tree topologies were evaluated by bootstrap analysis with the PHYLIP package based on 1000 resampled datasets. Sequence similarity values between the novel isolate and other related bacteria were evaluated using the EzTaxon nucleotide similarity search program (http://147.47.212.35:8080; Chun et al., 2007).

Comparative 16S rRNA gene sequence analysis showed that strain EM44T was most closely related to Eudoraea adriatica AS06/20aT, Zeaxanthinibacter enoshimensis TD-ZE3T and Robiginitalea biformata HTCC2501T with 94.5%, 92.9% and 92.1% sequence similarities, respectively. Phylogenetic analysis using the NJ algorithm based on 16S rRNA gene sequences indicated that strain EM44T formed a distinct phylogenetic line from the genus Eudoraea within the family Flavobacteriaceae with a low bootstrap value (43%), meaning that the phylogenetic topology was not stable (Fig. 1). Moreover, the topologies of phylogenetic trees built using the ML and MP algorithms showed that the isolate formed a phyletic lineage with the genus Zeaxanthinibacter within the family Flavobacteriaceae (see Supplementary Fig. S1 in IJSEM Online). Taxonomic analysis using the Ribosomal Database Project (RDP) classifier tool (http://rdp.cme.msu.edu/classifier, Naive Bayesian rRNA Classifier Version 2.0, Wang et al., 2007) indicated that the new isolate might be classified as a member of the genus Robiginitalea. These phylogenetic analyses suggested that there was no genus group showing a clear phylogenetic relationship with strain EM44T in the family Flavobacteriaceae.

Physiological characteristics of strain EM44T were examined by growing the isolate on MA at different temperatures (5–50 °C at 5 °C intervals). The pH range for growth was determined in MB adjusted to pH 5.0–10.0 at intervals of 0.5 pH unit. The pH was adjusted prior to sterilization by the addition of HCl or NaOH and measured again after sterilization. NaCl requirements and tolerance were determined between 0–10% (w/v) NaCl (increments of 1%) in nutrient broth (NB) supplemented with modified artificial seawater (1 l 1 l; 5.94 g MgSO$_4$·7H$_2$O, 4.53 g MgCl$_2$·6H$_2$O, 0.64 g KCl and 1.3 g CaCl$_2$). Gram staining was performed using a bioMérieux Gram Stain kit.

**Fig. 1.** Neighbour-joining tree based on 16S rRNA gene sequences showing the phylogenetic relationships of strain EM44T and related taxa. Bootstrap values are shown in percentages of 1000 replicates, when greater than 50%. Flexibacter flexilis ATCC 23079T (GenBank accession no. M62794) was used as an outgroup (not shown). Bar, 0.01 changes per nucleotide position.
according to the manufacturer’s instructions. Cell morphology, flagella and gliding motility were studied using phase-contrast microscopy and transmission electron microscopy (JEM-1010; JEOL) as described previously (Bernardet et al., 2002; Jeon et al., 2004). Antibiotic susceptibility tests were performed in duplicate as described previously (Reva et al., 1995) using filter paper discs (diameter, 8 mm, Whatman) containing the following antibiotics (µg per disc unless otherwise indicated): ampicillin (10), polymyxin B (100 U), streptomycin (50), penicillin G (10 U), chloramphenicol (100), gentamicin (30), tetracycline (30), kanamycin (30), lincomycin (15), oleandomycin (15), neomycin (30), carbenicillin (100) and novobiocin (50). Oxidase activity was tested by oxidation of 1 % (w/v) tetramethyl-p-phenylenediamine (Merck) and catalase activity was evaluated by the production of oxygen bubbles in 3 % (v/v) aqueous hydrogen peroxide solution.

The production of flexirubin type pigments was investigated using the KOH test as detailed in the minimal standards for the description of new taxa in the family Flavobacteriaceae (Bernardet et al., 2002). Carotenoid composition was characterized by using HPLC (model SPD-M20A, Shimadzu) equipped with a diode array detector (UV-Vis, 5.8 : 3.5 : 0.7 (by vol.)) as a mobile phase (Asker et al., 2007). Zeaxanthin was identified and confirmed from its retention time and absorption spectrum.

Hydrolysis of casein, Tween 80, Tween 20, aesculin, urea, tyrosine, starch and carboxymethylcellulose was investigated on MA after 7 days incubation at 30 °C according to previously described methods (Lányi, 1987; Smibert & Krieg, 1994). Nitrate reduction was performed according to the method of Lányi (1987). Additional enzymic activities and biochemical features were determined using API ZYM and API 20NE kits at 30 °C as recommended by the manufacturer (bioMérieux). The utilization or oxidation of carbon sources was determined using the GN MicroPlate system (Biolog) according to the manufacturer’s instructions. Anaerobic growth was assessed on MA under anaerobic (with 4–10 % CO2) conditions using the GasPak Plus system (BBL) at 30 °C for 20 days.

Strain EM44T grew well at 30 °C on MA. When tested on MA, growth of the strain was observed at temperatures between 15 and 35 °C, with optimum growth at 25–30 °C. Growth occurred between pH 6.5 and pH 9.0, with optimum pH 7.0–8.5. Bacterial cells were Gram-staining-negative straight rods that were 0.4–0.6 µm wide and 1.7–2.3 µm long (see Supplementary Fig. S2 in IJSEM Online).

Strain EM44T grew in NB supplemented with modified artificial seawater containing 1–6 % (w/v) NaCl; optimal growth occurred in the range of 2–4 % NaCl. The yellow-orange pigments of strain EM44T were identified as carotenoids, among which zeaxanthin was predominant (UV-Vis λmax of 451 and 476 nm) (Asker et al., 2007).

Physiological and biochemical characteristics of strain EM44T are shown in Table 1 and are detailed in the genus and species descriptions.

Table 1. Differential characteristics of strain EM44T and members of related genera of the family Flavobacteriaceae

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth with/at</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 % NaCl</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>7 % NaCl</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>1 % NaCl</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10 °C</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>37 °C</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>42 °C</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Gliding motility</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Hydrolysis of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agar</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>Starch</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gelatin</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>β-Galactosidase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Urease</td>
<td>(+)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

DNA G+C content (mol%) 47.9 38.9 46.5 56.4
Table 2. Cellular fatty acid content (%) of strain EM44T and members of related genera of the family Flavobacteriaceae

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Strain 1</th>
<th>Strain 2</th>
<th>Strain 3</th>
<th>Strain 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight chain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15:0</td>
<td>5.4</td>
<td>–</td>
<td>7.7</td>
<td>5.5</td>
</tr>
<tr>
<td>C16:0</td>
<td>1.6</td>
<td>tr</td>
<td>tr</td>
<td>1.3</td>
</tr>
<tr>
<td>Branched</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iso-C14:0</td>
<td>1.2</td>
<td>–</td>
<td>–</td>
<td>tr</td>
</tr>
<tr>
<td>iso-C15:0</td>
<td>20.7</td>
<td>29.4</td>
<td>18.9</td>
<td>26.0</td>
</tr>
<tr>
<td>iso-C16:0</td>
<td>3.9</td>
<td>tr</td>
<td>1.1 tr</td>
<td></td>
</tr>
<tr>
<td>iso-C17:0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>17.2</td>
</tr>
<tr>
<td>iso-C15:1 G</td>
<td>21.2</td>
<td>16.0</td>
<td>9.9</td>
<td>–</td>
</tr>
<tr>
<td>anteiso-C15:0 A</td>
<td>4.4</td>
<td>tr</td>
<td>2.3</td>
<td>3.7</td>
</tr>
<tr>
<td>iso-C16:1 G</td>
<td>1.9</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>iso-C17:109c</td>
<td>1.5</td>
<td>9.0</td>
<td>13.3</td>
<td>tr</td>
</tr>
<tr>
<td>Unsaturated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15:0 109c</td>
<td>–</td>
<td>1.1 tr</td>
<td>tr</td>
<td></td>
</tr>
<tr>
<td>C17:0 109c</td>
<td>–</td>
<td>tr</td>
<td>1.0 tr</td>
<td></td>
</tr>
<tr>
<td>Hydroxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15:0 3-OH</td>
<td>4.9</td>
<td>1.3</td>
<td>–</td>
<td>tr</td>
</tr>
<tr>
<td>C17:0 2-OH</td>
<td>1.1</td>
<td>–</td>
<td>tr</td>
<td>1.2</td>
</tr>
<tr>
<td>iso-C15:0 3-OH</td>
<td>–</td>
<td>7.3</td>
<td>2.7</td>
<td>4.3</td>
</tr>
<tr>
<td>iso-C16:0 3-OH</td>
<td>10.3</td>
<td>1.4</td>
<td>2.4 tr</td>
<td></td>
</tr>
<tr>
<td>iso-C17:0 3-OH</td>
<td>12.5</td>
<td>14.1</td>
<td>16.5</td>
<td>25.8</td>
</tr>
<tr>
<td>Summed feature 3*</td>
<td>5.8</td>
<td>11.6</td>
<td>5.8</td>
<td>3.5</td>
</tr>
<tr>
<td>Unknown ECL 13.56</td>
<td>1.2</td>
<td>2.3</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>Unknown ECL 16.58</td>
<td>–</td>
<td>1.2</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

*Summed features represent groups of two or three fatty acids which could not be separated by GLC with the MIDI system. Summed feature 3 contained C16:107c and/or iso-C15:0 2-OH.

Muriicola jejuensis gen. nov., sp. nov.

Muriicola [Mu.ri.i’co.la. L. n. muria (or muries) salt liquor; L. suffix -cola (from L. n. incola) dweller, inhabitant; N.L. masc. n. Muriicola dweller in salt water].

Cells are non-motile by gliding, non-spore-forming and strictly aerobic rods without flagella. Nitrate is reduced to nitrite. Gram-staining-negative, catalase and oxidase positive. Major isoprenoid quinone is MK-6. Carotenoid pigments are produced with zeaxanthin as the major component, but flexirubin-type pigments are not produced. Predominant polar phospholipid is phosphatidylethanolamine. The G+C content of the type strain of the type species is 47.9 mol% (HPLC). The type species is Muriicola jejuensis.

Description of Muriicola jejuensis sp. nov.

Muriicola jejuensis (jeju.en’sis. N.L. masc. adj. jejuensis of Jeju island, Republic of Korea, from where the type strain was isolated).

Displays the following characteristics in addition to those in the genus description. Cells are 0.4–0.6 μm wide and 1.7–2.3 μm long. Colonies on MA are yellow–orange, low convex, circular with entire margins. Growth occurs at 15–35 °C (optimum 25–30 °C), at pH 6.5–9.0 (optimum pH 7.0–8.5) and in the presence of 1–5 % (w/v) NaCl (optimum 2–4 %). Anaerobic growth is not observed after 20 days at 30 °C on MA. Nitrate is reduced to nitrite, but nitrogen gas is not produced. Aesculin is hydrolysed, but Tween 20, Tween 80, gelatin, starch, carboxymethylcellulose, tyrosine, casein and urea are not hydrolysed. Alkaline phosphatase, esterase lipase (C8), leucine arylamidase, valine arylamidase, cystine arylamidase, acid phosphatase, trypsin, x-galactosidase, β-galactosidase, β-glucosidase, β-glucosidase and N-acetyl-β-glucosaminidase activities are present, but lipase (C14), β-gluconoridase and α-fucosidase activities are absent. Weak enzymic activities are observed for esterase (C4), x-chymotrypsin, napthol-AS-BI-phosphohydrolase and α-mannosidase (API ZYM). Positive for Biolog GN2 MicroPlate system substrates α-cyclodextrin, dextrin, D-fructose, D-galactose, gentiobiose, α-D-glucose, α-D-lactose, lactulose, maltose, melibiose, methyl β-D-glucoside, raffinose, sucrose, D-trehalose, xylitol, acetic acid, γ-hydroxybutyric acid, x-ketoglutaric acid, x-ketovaleric acid, propionic acid, succinic acid, L-glutamic acid, glycyl-L-aspartic acid, glycyl-L-glutamic acid, L-leucine, L-proline, L-threonine and putrescine. Other organic substrates included in the Biolog GN2 microplates are not oxidized. Strain EM44T is resistant to polymyxin B, streptomycin, ampicillin, gentamicin, tetracycline, kanamycin, neomycin and oleandomycin but sensitive to
penicillin G, carbenicillin, lincomycin, chloramphenicol and novobiocin. The major cellular fatty acids are iso-C₁₅:₁ G, iso-C₁₅:₀, iso-C₁₇:₀ 3-OH and iso-C₁₆:₀ 3-OH. Polar phospholipids are dominated by a large amount of phosphatidylethanolamine and several amino group-containing lipids are also present. The major isoprenoid quinone is menaquinone-6 (MK-6).

The type strain, EM44ᵀ (=KCTC 22299ᵀ = DSM 21206ᵀ), was isolated from seawater on the eastern coast of Jeju Island, Korea. The DNA G+C content of the type strain is 47.9 mol% (HPLC).

Acknowledgements

These efforts were supported by grants from the MOST/KOSEF to the Environmental Biotechnology National Core Research Center (grant No. R15-2003-012-20020-0) and to the 21C Frontier Microbial Genomics and Application Center Program, Ministry of Education, Science & Technology, Korea.

References


Felsenstein, J. (2002). PHYLIP (phylogeny inference package), version 3.6a, Seattle: Department of Genetics, University of Washington, Seattle, WA, USA.


