
Jean-Philippe Carlier,1† Marie Bedora-Faure,1 Guylène K’ouas,1 Corentine Alauzet2 and Francine Mory2

1Centre National de Référence des Bactéries Anaérobies et du Botulisme, Institut Pasteur, 25 rue du Dr Roux, F-75724 Paris Cedex 15, France

2Centre Hospitalier et Universitaire de Nancy, Hôpital Central, Laboratoire de Bactériologie, 29 avenue du Maréchal de Lattre de Tassigny, F-54035 Nancy Cedex, France

We isolated several strains from various clinical samples (five samples of blood, four of intra-abdominal pus and one of infected soft tissue) that were anaerobic, motile or non-motile and Gram-positive rods. Some of the strains formed spores. Phylogenetic analysis of the 16S rRNA gene sequence showed that these organisms could be placed within clostridial cluster IV as defined by Collins \textit{et al.} ([1994). \textit{Int J Syst Bacteriol} 44, 812–826] and shared more than 99 \% sequence similarity with \textit{Clostridium orbiscindens} DSM 6740T and \textit{Eubacterium plautii} DSM 4000T. Together, they formed a distinct cluster, with \textit{Bacteroides capillosus} ATCC 29799T branching off from this line of descent with sequence similarities of 97.1–97.4 \%. The next nearest neighbours of these organisms were \textit{Clostridium viride}, \textit{Oscillibacter valericigenes}, \textit{Papillibacter cinnamivorans} and \textit{Sporobacter termitidis}, with sequence similarities to the respective type strains of 93.1–93.4, 91.2–91.4, 89.8–90 and 88.7–89.3 \%. On the basis of the biochemical properties, phylogenetic position, DNA G+C content and DNA–DNA hybridization, it is proposed to unify \textit{Clostridium orbiscindens} and \textit{Eubacterium plautii} in a new genus as \textit{Flavonifractor plautii} gen. nov., comb. nov., with the type strain Prévot S1T (=ATCC 29863T =VPI 0310T =DSM 4000T), and to reassign \textit{Bacteroides capillosus} to \textit{Pseudoflavonifractor capillosus} gen. nov., comb. nov., with the type strain CCUG 15402AT (=ATCC 29799T =VPI R2-29-1T).

The genus \textit{Clostridium} has undergone extensive revision in recent years and has been subdivided into 19 clusters on the basis of 16S rRNA gene sequence analysis. Cluster I, containing the type species \textit{Clostridium butyricum}, and clusters XI and XIVa include the majority of pathogenic species (Collins \textit{et al.}, 1994). The members of cluster IV exhibit a combination of \textit{Clostridium}- and non-\textit{Clostridium}-type properties and a broad range of chromosomal DNA G+C content (e.g. \textit{Clostridium sporosphaeroides}, a Gram-positive spore-forming rod, and \textit{Bacteroides capillosus}, a Gram-negative non-sporeulating species, with 27 and 60 mol\% G+C, respectively). This cluster also includes \textit{Clostridium orbiscindens} and \textit{Eubacterium plautii}, species which are asaccharolytic and produce acetate and butyrate. The name \textit{Clostridium orbiscindens} was proposed for an anaerobic bacillus isolated from human faeces and capable of cleaving the C3–C4 bond of quercetin (Winter \textit{et al.}, 1991) and other flavanoids (Schoefer \textit{et al.}, 2003). This organism is motile, peritrichous, Gram-variable and forms spores.

\textit{Eubacterium plautii} (type and only known strain Prévot S1T =DSM 4000T =ATCC 29863T =VPI 0310T) was

†Deceased.

\textbf{Abbreviation:} DPH, 1,6-diphenyl-1,3,5-hexatriene.

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequences of strains AIP 162.06, AIP 165.06, AIP 028.07, AIP 201.04 and AIP 029.07 are EU541435–EU541439, respectively.

Results of DPH fluorescence-quenching tests and PCR amplification of spo0A fragments are available as supplementary material with the online version of this paper.
originally described by Séguin (1928) as Fusobacterium plautii (sic), a motile, Gram-negative, non-spore-forming bacillus. On the basis of electron microscope examination, Hofstad & Aasjord (1982) showed that Fusobacterium plautii is a non-motile, Gram-positive organism and transferred this species to the genus Eubacterium. However, in Bergey’s Manual of Systematic Bacteriology, this organism was described as motile and Gram-negative with very occasional, weakly Gram-positive areas (Moore & Holdeman Moore, 1986). The ability of Eubacterium plautii to cleave quercetin is not known. Thus, the characteristics and taxonomic status of this species need to be clarified.

The isolation from various clinical samples (five samples of blood, four of intra-abdominal pus and one of infected soft tissue) of several strains with 16S RNA gene sequences that were phylogenetically closely related to those of Clostridium orbiscindens DSM 6740T, Eubacterium plautii DSM 4000T and Bacteroides capillosus ATCC 29799T prompted us to re-evaluate the phylogenetic position of these three species.

Selected isolates AIP 201.04, AIP 162.06 (=LBN 202), AIP 165.06 (=LBN 204), AIP 028.07 (=LBN 205) and AIP 029.07 (=LBN 206) and the three type strains were maintained in tryptase-glucose-yeast extract (TGY) medium (Carlier et al., 2002) under anaerobic conditions at 37 °C for 24 h in an anaerobic jar containing 5 % H2, 5 % CO2 and 90 % N2 (by vol.). 16S rRNA gene sequences were determined for each strain as described previously (Carlier et al., 2004). Alignments were done using CLUSTAL W (Thompson et al., 1994). A distance matrix was calculated by using DNADIST with the Jukes–Cantor parameter (Jukes & Cantor, 1969). Phylogenetic analysis established that these isolates were part of clostridial cluster IV, as defined by Collins et al. (1994), and were closely related to Clostridium orbiscindens DSM 6740T and Eubacterium plautii DSM 4000T, with 99.3–100 % sequence similarity. Together, the latter two type strains and the clinical isolates formed a distinct cluster, with Bacteroides capillosus ATCC 29799T branching off from this line of descent with sequence similarities of 97.1–97.4 % (Fig. 1).

The next nearest neighbours of this cluster were Clostridium viride DSM 6836T, Oscillibacter valericigenes Sjm18-20T, Papillibacter cinnamonovorans CIN1T and Sporobacter termitidis SYR5T, with respective 16S rRNA gene sequence similarities of approximately 93, 91, 90 and 89 %.

The sequences of Clostridium orbiscindens DSM 6740T and Eubacterium plautii DSM 4000T shared 99.7 % similarity. This high similarity suggested that these species may be identical, notwithstanding some physiological differences. To verify this hypothesis, the G+C content of the DNA for each strain was determined by HPLC as described by Mesbah et al. (1989) and DNA–DNA hybridization was performed. DNA was extracted using a French pressure cell (Thermo Spectronic) and purified by chromatography on hydroxyapatite as described by Cashon et al. (1977). DNA–DNA hybridization was carried out using the method described by De Ley et al. (1970), modified according to Huß et al. (1983), using a model Cary 100 Bio UV/Vis spectrometer equipped with a Peltier-thermo-statted multicell changer and a temperature controller with in-situ temperature probe (Varian). The two type strains shared 72.6–76.9 % DNA–DNA reassociation. The DNA base composition for Eubacterium plautii DSM 4000T and Clostridium orbiscindens DSM 6740T was 58.0 mol% G+C, respectively. Thus, according to the established molecular criteria for species-level relatedness, i.e. strains whose DNAs are at least 70 % related under optimal conditions and whose 16S rRNA gene sequences show less than 3 % divergence (Wayne et al., 1987; Stackebrandt et al., 2002), these strains could be regarded as belonging to a single species. Nevertheless, some phenotypic properties were further examined.

Degradation of quercetin

Bacterial degradation of quercetin was checked by the fluorescence-quenching test according to Schoefer et al. (2001) and modified as follows. Aliquots (150 μl) of stock solutions containing 1 mM 1,6-diphenyl-1,3,5-hexatriene (DPH) and 20 mM quercetin were added in loosely covered 180 × 8 mm tubes. The tubes contained 5 ml
TGY agar and were inoculated with 0.5 ml of an overnight growing culture of each strain and incubated at 37 °C for 48 h. For detection of fluorescence, the tubes were examined under a UV lamp (wavelength 365 nm). Quercetin was degraded by all strains, including *Eubacterium plautii* DSM 4000T, as demonstrated by the strong fluorescence observed (Supplementary Fig. S1, available in IJSEM Online). On the other hand, *Escherichia coli* K-12, which does not degrade quercetin, and the negative control (without bacteria) did not affect the quenching of DPH fluorescence. Thus, *Eubacterium plautii* DSM 4000T, like *Clostridium orbiscindens* DSM 6740T, is able to degrade quercetin.

Detection of the sporulation-specific gene spo0A

Spore formation was not observed with some clinical isolates or the type strain of *Eubacterium plautii*, DSM 4000T. However, the inability to form spores is not an effective criterion for the determination of taxonomic status (Cato & Stackebrandt, 1989). Lack of spore formation may result from defective strains; such asporogenic strains must have the majority of sporulation-specific genes (Onyenwoke et al., 2004). Brill & Wiegel (1997) described a PCR assay to distinguish asporogenic from non-spore-forming bacteria by employing probes directed against three representative and specific sporulation genes. Thus, we chose to investigate the presence of the sporulation-specific gene *spo0A* for the strains for which endospores have not been observed. The PCR assay was used with the following modifications: DNA was extracted using the InstaGene Matrix kit (Bio-Rad) as recommended by the manufacturer. PCRs were performed using 1.5 mM MgCl2 instead of 0.125–0.375 mM. Our results showed that the isolates for which endospores have not been observed, as well as *Eubacterium plautii* DSM 4000T, exhibited the sporulation-specific gene *spo0A* (Supplementary Fig. S2).

Cellular fatty acid composition

Cellular fatty acid composition was analysed by gas chromatography according to Veys et al. (1989) on a fused-silica capillary column (25 m × 0.25 mm i.d.) coated with 5% methyl phenyl silicone. The cellular fatty acid compositions of *Eubacterium plautii* DSM 4000T, *Clostridium orbiscindens* DSM 6740T and the clinical strains were very similar. All strains contained an unknown compound that eluted between C12:0 and C13:0 (6.5–8.2%), C14:0 (34–36.9%), a second unknown compound that eluted between anteiso-C15:0 and C15:0 (22.6–28.3%), C16:0 (14.4–18.1%), C17:1ω8c (3.2–5.2%) and C18:0 (3.1–7.3%) as the major components. Minor fatty acids included iso-C15:0 (1.6–2.2%) and C16:1ω9c (0–3.2%).

Susceptibility to glycopeptides

Determination of MICs of vancomycin and teicoplanin according to CLSI standards (CLSI, 2007) showed that all the clinical isolates as well as the type strains of *Eubacterium plautii* and *Clostridium orbiscindens* were susceptible to teicoplanin (MICs 0.25–0.5 μg ml⁻¹) and exhibited reduced susceptibility to vancomycin (MICs 4–8 μg ml⁻¹). Known glycopeptide-resistance genes were not detected using a PCR assay (Domingo et al., 2005; Fines et al., 1999; McKessar et al., 2000; Mory et al., 1998; Perichon et al., 1997; Rippere et al., 1998).

In conclusion, the phenotypic and genotypic characteristics of *Eubacterium plautii* and *Clostridium orbiscindens* were very similar and strongly suggest that the two species represent the same taxon. The only differences observed were the inability of *Eubacterium plautii* DSM 4000T to produce spores and the motility of *Clostridium orbiscindens* DSM 6740T. These differences were also observed among the clinical isolates and could simply represent strain variations within the species.

Accordingly, we propose that *Clostridium orbiscindens* Winter et al. 1991 and *Eubacterium plautii* (Seguin 1928) Hofstad and Aasjord 1982 be unified and reclassified in a new genus, *Flavonifractor* gen. nov., with *Flavonifractor plautii* comb. nov. as the type species. Since our clinical isolates share identical properties with *Eubacterium plautii* and *Clostridium orbiscindens*, they should be regarded as belonging to the species *Flavonifractor plautii*.

Taxonomic status of Bacteroides capillosus and Clostridium viride

Bacteroides capillosus (Tissier 1908) Kelly 1957 is a non-motile, Gram-negative, non-spore-forming bacillus. Because the original type strain was lost, Cato et al. (1979) selected strain ATCC 29799T as the neotype strain of the species. However, it is evident from tree branching patterns, cellular fatty acids and 5S rRNA sequence studies (Van den Eynde et al., 1989) that *Bacteroides capillosus* ATCC 29799T is phenotypically and phylogenetically distinct from the genus *Bacteroides* as defined by Shah & Collins (1989). In addition, the G+C content of the DNA of *Bacteroides capillosus* (60 mol%) differs from those of members of the genus *Bacteroides*, which range between 39 and 48 mol% (Shah & Collins, 1989). Consequently, *Bacteroides capillosus* cannot be maintained in the genus *Bacteroides*, and we propose its placement within clostridial cluster IV. The very high level of sequence similarity (>97%) together with biochemical and physiological properties and similar DNA base compositions (58 and 61.6 mol% G+C) showed that *Bacteroides capillosus* is closely related to the new genus *Flavonifractor* (Table 1). However, we tested strain CCUG 15402A T (=ATCC 29799T) for the presence of the sporulation-specific gene *spo0A* and for its potential to degrade quercetin. Although this strain has the gene *spo0A*, it is unable to degrade quercetin (data not shown). This feature and other major differences such as Gram staining and metabolic end products prevent its placement within this genus. In this context, we propose that *Bacteroides capillosus* be placed in...
Table 1. Comparison of biochemical and physiological properties of *Clostridium orbiscindens*, *Eubacterium plautii*, *Bacteroides capillosus* and *Clostridium viride*

Data were obtained from this study (*Clostridium orbiscindens* and *Eubacterium plautii*), Cato *et al.* (1979) and Van den Eynde *et al.* (1989) (*Bacteroides capillosus*) and Buckel *et al.* (1994) (*Clostridium viride*). V, Variable; −, negative; +, positive; NA, no data available. All species are non-fermentative.

<table>
<thead>
<tr>
<th>Property</th>
<th>C. orbiscindens</th>
<th>E. plautii</th>
<th>B. capillosus</th>
<th>C. viride</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram staining</td>
<td>V</td>
<td>V</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>G+C content (mol%)*</td>
<td>58.0</td>
<td>61.6</td>
<td>60</td>
<td>41.5</td>
</tr>
<tr>
<td>Metabolic end products†</td>
<td>A, B</td>
<td>A, B</td>
<td>A, S</td>
<td>A, P, B, V</td>
</tr>
<tr>
<td>Major cellular fatty acids</td>
<td>C_{14:0}, C_{16:0}</td>
<td>C_{14:0}, C_{16:0}</td>
<td>C_{14:0}, C_{16:0}</td>
<td>NA</td>
</tr>
</tbody>
</table>

*Data for the type strains.
†A, Acetic acid; B, butyric acid; P, propionic acid; S, succinic acid; V, valeric acid.

a new genus, *Pseudoflavonifractor* gen. nov., as *Pseudoflavonifractor capillosus* comb. nov.

Phylogenetically, *Clostridium viride* (Buckel *et al.*, 1994) clearly belongs to cluster IV. However, with sequence similarities of 93.1–93.4%, it is too remote from *Flavonifractor* or *Pseudoflavonifractor* to be affiliated with either of these genera. This is supported by a high bootstrap value (Fig. 1). Moreover, Gram staining, DNA base composition (41.5 mol% G+C) and metabolic end products support the view that this species represents another genus (Table 1). Further investigations are needed to define this probable new genus.

Description of Flavonifractor gen. nov.

Flavonifractor (Fla.vo.ni.frac’tor. N.L. n. flavonum flavone; L. masc. n. fractor breaker; N.L. masc. n. Flavonifractor flavone-breaker).

Strictly anaerobic bacilli. Cells are Gram-variable after staining. Motility is variable. Spores may or may not be produced, but the sporulation-specific gene spo0A is present. Asaccharolytic; glucose, fructose and ribose can be fermented weakly. Able to cleave quercetin and other flavonoids. Exhibit reduced susceptibility to vancomycin. Major metabolic end products are acetic and butyric acids in TGY broth. Major cellular fatty acids are C_{14:0} and C_{16:0}. Phylogenetically, the genus represents a distinct lineage in clostridial cluster IV. The type species is *Flavonifractor plautii*.

Description of Flavonifractor plautii comb. nov.

Flavonifractor plautii (plau’ti.i. N.L. gen. masc. n. plautii of Plaut, named for H. C. Plaut, the bacteriologist who first described this organism).

Basonym: *Fusobacterium plautii* Séguin 1928.

The description combines characteristics of *Eubacterium plautii* as determined by Séguin (1928) and emended by Hofstad & Aasjord (1982) and those of *Clostridium orbiscindens* (Winter *et al.*, 1991). Displays the following characteristics in addition to those given in the genus description. Straight or slightly curved rods, 2–10 μm long, and occur singly or in pairs. Some cells are fusiform. Colonies are minute, circular, convex, grey or white, smooth, non-haemolytic on sheep blood agar. Nitrate is not reduced. Production of indole and H2S is variable. Gelatin and meat are not digested. Lecithinase is not produced. The genomic DNA G+C content is 58–61.6 mol% (as determined by HPLC). The species includes strains previously classified as *Clostridium orbiscindens*.

The type strain is DSM 4000^T^ (=ATCC 29863^T^ =VPI 0310^T^ =Prévot S1^T^). Strains have been isolated from the normal faecal flora, blood, intra-abdominal pus and infected soft tissues in humans.

Description of Pseudoflavonifractor gen. nov.

Pseudoflavonifractor (Pseu.do.fla.vo.ni.frac’tor. Gr. adj. pseudes false; N.L. masc. n. Flavonifractor a bacterial genus name; N.L. masc. n. Pseudoflavonifractor a false Flavonifractor).

Strictly anaerobic, Gram-negative, non-motile, non-spore-forming bacilli. Phylogenetically, the genus represents a distinct lineage in clostridial cluster IV. The type species is *Pseudoflavonifractor capillosus*.

Description of Pseudoflavonifractor capillosus comb. nov.

Pseudoflavonifractor capillosus (ca.pil.losus. L. masc. adj. capillosus full of hair, very hairy).

The phenotypic and morphological characters are as described by Cato *et al.* (1979) for *Bacteroides capillosus*. Displays the following properties in addition to those described for the genus. Spores are not formed but the
sporulation-specific gene spotA is present. Straight or curved rods, 1.6–7.1 μm long, predominantly regular in shape, arranged singly, in pairs or in short chains. Filaments with tapered ends are observed. Surface colonies on 48-h-old, anaerobic blood agar are pinpoint to 0.5 mm in diameter, circular, slightly erose, colourless, translucent and slightly peaked. Growth is stimulated by the addition of approx. 0.02 % Tween 80 but is inhibited by 20 % bile. Good growth is observed at 37 and 45 °C. Asaccharolytic; glucose, cellobiose, fructose, galactose, lactose, maltose, mannose, starch and sucrose can be fermented weakly. Aesculin is hydrolysed. Nitrate is not reduced. Indole is not produced. H2S is usually not produced. Gelatin is usually not digested. Cecithinase and lipase are not produced. Unable to cleave quercetin. Acetic and succinic acids are detected after culture in TGY broth. The major cellular fatty acids are C₁₄:₀ and C₁₆:₀. The G+C content of the DNA of the type strain is 60 mol%.

The type strain ATCC 29799T (=CCUG 15402Aᵀ =VPI R2-29-1ᵀ) was isolated from human faeces.

Acknowledgements

We thank Jean Euzéby for his advice on etymology and Enevold Felsen (CCUG, University of Göteborg, Sweden) for the gift of Bacteroides capillosus CCUG 15402Aᵀ.

References

