Sphingomonas aestuarii sp. nov., isolated from tidal flat sediment

Seong Woon Roh,1 Kyoung-Ho Kim,1 Young-Do Nam,1 Ho-Won Chang,1 Min-Soo Kim,1 Hee-Mock Oh2 and Jin-Woo Bae1

1Department of Biology, Kyung Hee University, Seoul 130-701, Korea
2Biological Resource Center, Kyung Hee University, Seoul 130-701, Korea.

A novel bacterium (strain K4T) belonging to the genus *Sphingomonas* was isolated from tidal flat sediment in Korea. Its morphology, physiology, biochemical features and 16S rRNA gene sequence were characterized. Colonies of this strain are yellow in colour and the cells are rod-shaped, exhibiting negative Gram staining. The strain grows at 0–5 % (w/v) NaCl and 20–35 °C, with optimal growth occurring at 0 % (w/v) NaCl and 30 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain K4T is associated with the genus *Sphingomonas*. Within the phylogenetic tree, this novel strain shares a branching point with *Sphingomonas asaccharolytica* Y-345T, with which it shares 97.3 % 16S rRNA gene sequence similarity. The polyamine pattern predominantly contains the *Sphingomonas*-specific triamine sym-homospermidine. Combined analysis of 16S rRNA gene sequences, DNA–DNA relatedness, physiological and biochemical test results identified genotypic and phenotypic differences between strain K4T and other *Sphingomonas* species. On the basis of these differentiating features, it is concluded that strain K4T (≡KCTC 22050T=DSM 19475T) represents a novel species of the genus *Sphingomonas*, for which the name *Sphingomonas aestuarii* sp. nov. is proposed.

The genus *Sphingomonas* was first proposed by Yabuuchi et al. (1990); it was amended by Takeuchi et al. (1993) and divided into four genera: *Sphingomonas sensu stricto*, *Sphingobium*, *Novosphingobium* and *Sphingopyxis* (Takeuchi et al., 2001). Currently, more than 30 species with validly published names in the genus *Sphingomonas sensu stricto* have been isolated from various environments, including natural mineral water (Lee et al., 2001), plants (Takeuchi et al., 1995; Xie & Yokota, 2006) and soil (Ohta et al., 2004; Reddy & Garcia-Pichel, 2007; Yoon et al., 2006).

In this study, a novel strain was isolated from tidal flat sediment in Yeosu (34° 47' 26" N 127° 34' 01" E), South Korea, and cultured by dilution plating on R2A agar (Difco). Cell biomass for analysis of cellular composition and DNA extraction was collected from R2A agar plates incubated at 30 °C for 2 days. Chromosomal DNA was extracted by using a DNA extraction kit (iNtRON Biotechnology). The 16S rRNA gene was PCR-amplified from chromosomal DNA by using PCR Pre-Mix (Solgent) with two bacterial universal primers (Baker et al., 2003). The PCR product was purified with a PCR purification kit (Cosmo Genetech) and sequencing was performed as described previously (Roh et al., 2008). Almost-full-length 16S rRNA gene sequences were assembled by using SeqMan software (DNASTAR). The 16S rRNA gene sequence of the novel isolate was aligned with those of related taxa obtained from GenBank by using the multiple sequence alignment program CLUSTAL_X (1.8) (Thompson et al., 1997). The phylogenetic relationships of representative *Sphingomonas* species were determined by using the MEGA3 (Kumar et al., 2004) and PAUP 4.0 (Swofford, 2003) software programs. Distance matrices were determined by following the assumptions described by Kimura (1980) and used to elaborate dendrograms by the neighbour-joining (Saitou & Nei, 1987) and maximum-likelihood (Felsenstein, 1981) methods. A bootstrap analysis evaluating the stability of the trees was performed by using a consensus tree based on 1000 randomly generated trees. DNA–DNA hybridization was performed by using the fluorometric method of Ezaki et al. (1989).

Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain K4T is associated with the genus...
Sphingomonas. Comparison of the 16S rRNA gene sequence of strain K4T with those of Sphingomonas species with validly published names by using Fasta (EMBL) showed that the sequence was related most closely to that of Sphingomonas asaccharolytica Y-345T (97.3 %), followed by Sphingomonas mali Y-351T (96.9 %), Sphingomonas pruni Y-250T (96.7 %), Sphingomonas desiccabilis CP11T (96.4 %), Sphingomonas aquatilis JSS7T (96.3 %), Sphingomonas koreensis JSS26T (96.2 %), Sphingomonas melonis DAPP-PG 224T (96.2 %), Sphingomonas soli T5-04T (96.2 %), Sphingomonas insulana DS-28T (96.1 %) and Sphingomonas panni C52T (96.4 %). The result revealed 46.0 and 29.1 % sequence identity of strain K4T with those of S. asaccharolytica Y-345T, which has the highest 16S rRNA gene sequence similarity (97.3 %) to the novel strain, and S. soli T5-04T, which clusters with the novel strain in the phylogenetic tree based on the neighbour-joining method (Fig. 1), the novel strain shares a branching point with S. asaccharolytica Y-345T. DNA–DNA homology studies were performed to determine the genomic relationship between the isolate and its closest phylogenetic relatives: S. asaccharolytica Y-345T, which has the highest 16S rRNA gene sequence similarity (97.3 %) to the novel strain, and S. soli T5-04T, which clusters with the novel strain in the phylogenetic tree based on the neighbour-joining method (data not shown). The result revealed 46.0 and 29.1 % DNA–DNA homology between strain K4T and S. asaccharolytica Y-345T and S. soli T5-04T, respectively. The characteristics of 16S rRNA gene sequence similarity and DNA–DNA relatedness values below the threshold of 70 % (Wayne et al., 1987) indicate that strain K4T represents a distinct genospecies.

Cell morphology was examined by light microscopy (Eclipse 80i; Nikon) and electron microscopy, and Gram staining was performed by the non-staining method described by Buck (1982). Motility was examined by the wet-mount method and spore formation was determined by using the staining method (Schaeffer & Fulton, 1933). Growth on tryptic soy agar (TSA), marine agar (MA), nutrient agar (NA) and Luria agar (LA) (all from Difco) was also determined. Enzyme activities and substrate utilization as sole carbon source were determined by using API 20NE, API 50CH and API ZYM test strips according to the manufacturer’s instructions (bioMérieux). Growth at different temperatures (4, 10, 15, 17, 20, 25, 30, 35, 37, 40 and 50 °C) was assessed on R2A agar. Various NaCl concentrations (0.0, 1.0, 3.0, 5.0, 7.5, 10.0, 15.0 and 20.0 %, w/v) and pH conditions (pH 3.0–12.0) were examined for optimal growth using R2A broth. Analyses of gelatin and starch hydrolysis were conducted as described by Smibert & Krieg (1994). Catalase activity was determined by observing bubble production in 3 % (v/v) hydrogen peroxide solution and oxidase activity was determined by using an oxidase reagent (bioMérieux).

Cells of strain K4T are non-spore-forming, Gram-negative, non-motile and rod-shaped. Colonies of strain K4T are yellow-pigmented, like those of other Sphingomonas strains. Growth occurs on R2A agar plates containing up to 5 % (w/v) NaCl, but not at 7.5 % (w/v) NaCl. Strain K4T cannot reduce nitrate to nitrite. It can grow on complex media such as TSA, LA, MA or NA plates. Strain K4T is catalase- and oxidase-positive. Gelatin hydrolysis occurs, but starch hydrolysis does not. The optimal temperature for growth is 30 °C. A detailed species description is presented below and Table 1 lists the characteristics that differentiate strain K4T from related members of the genus Sphingomonas.

For quantitative analysis of cellular fatty acid composition, a loop of cell mass was harvested after 2 days; cellular fatty acids were saponified, methylated and extracted according to the protocol of the Sherlock Microbial Identification system (MIDI). Fatty acids were analysed by gas chromatography (Hewlett Packard 6890) and identified by the Microbial Identification software package (Sasser, 1990). The predominant cellular fatty acids in strain K4T were C\textsubscript{14:0} \textit{c} (44.9 %), 11-Me-C\textsubscript{18:1} \textit{c} (17.7 %) and C\textsubscript{16:0} \textit{c} (17.6 %). Minor amounts of 2-hydroxy fatty acids C\textsubscript{14:0} \textit{OH} (4.7 %), summed feature 3 comprising C\textsubscript{16:1} \textit{c} and/or iso-C\textsubscript{15:0} \textit{c} and/or C\textsubscript{15:0} \textit{OH} (3.9 %) and C\textsubscript{15:0} \textit{OH} (6.6 %) were also present. The detailed fatty acid composition is given in the species description. No 3-hydroxy fatty acids were identified. This composition profile, showing octadecenoic and hexadecanoic acid isomers as the major fatty acids, with a minor presence of 2-hydroxy fatty acids and the absence of 3-hydroxy fatty acids, is characteristic of members of the genus Sphingomonas (Takeuchi et al., 2001).

Polar lipids were extracted, separated by two-dimensional thin-layer chromatography on 20 × 20 cm silica gel glass plates (Merck) with the two solvents chloroform/methanol/water (65 : 25 : 4, v/v) for the first dimension (from a loop of cell mass harvested after 2 days; cellular fatty acids were saponified, methylated and extracted according to the protocol of the Sherlock Microbial Identification system (MIDI). Fatty acids were analysed by gas chromatography (Hewlett Packard 6890) and identified by the Microbial Identification software package (Sasser, 1990). The predominant cellular fatty acids in strain K4T were C\textsubscript{14:0} \textit{c} (44.9 %), 11-Me-C\textsubscript{18:1} \textit{c} (17.7 %) and C\textsubscript{16:0} \textit{c} (17.6 %). Minor amounts of 2-hydroxy fatty acids C\textsubscript{14:0} \textit{OH} (4.7 %), summed feature 3 comprising C\textsubscript{16:1} \textit{c} and/or iso-C\textsubscript{15:0} \textit{c} and/or C\textsubscript{15:0} \textit{OH} (3.9 %) and C\textsubscript{15:0} \textit{OH} (6.6 %) were also present. The detailed fatty acid composition is given in the species description. No 3-hydroxy fatty acids were identified. This composition profile, showing octadecenoic and hexadecanoic acid isomers as the major fatty acids, with a minor presence of 2-hydroxy fatty acids and the absence of 3-hydroxy fatty acids, is characteristic of members of the genus Sphingomonas (Takeuchi et al., 2001).

Polar lipids were extracted, separated by two-dimensional thin-layer chromatography on 20 × 20 cm silica gel glass plates (Merck) with the two solvents chloroform/methanol/water (65 : 25 : 4, v/v) for the first dimension (from
Table 1. Differentiating characteristics of *Sphingomonas aestuarii* sp. nov. and closely related species

Taxa: 1, *Sphingomonas aestuarii* K4T; 2, *S. asacharolytica* IFO 15499T (data from Takeuchi et al., 1995); 3, *S. mali* IFO 15000T (Takeuchi et al., 1995); 4, *S. pruni* IFO 15498T (Takeuchi et al., 1995); 5, *S. echinoides* DSM 1805T (Denner, 1999); 6, *S. oligophenolica* S213T (Ohta et al., 2004); 7, *S. koreensis* JS26T (Lee et al., 2001); 8, *S. soli* TS-04T (Yang et al., 2006). +, Positive; −, negative; NR, not reported; PNPG, p-nitrophenyl-β-D-galactopyranoside.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth at 37 °C</td>
<td>−</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>+</td>
<td>+*</td>
<td>NR</td>
</tr>
<tr>
<td>Motility</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Reduction of nitrate</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+†</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Starch hydrolysis</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Enzyme activities:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipase</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>NR</td>
<td>NR</td>
<td>+</td>
<td>NR</td>
</tr>
<tr>
<td>Protease (gelatin hydrolysis)</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>β-Galactosidase (PNPG hydrolysis)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>NR</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>β-Glucosidase (aesculin hydrolysis)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>NR</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Assimilation of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Ketogluconate</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>NR</td>
<td>NR</td>
<td>−</td>
</tr>
<tr>
<td>Gluconate</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Malate</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Arabinose</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>L-Fucose</td>
<td>−</td>
<td>NR</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>D-Mannose</td>
<td>+</td>
<td>NR</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Melibiose</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>NR</td>
<td>+</td>
</tr>
<tr>
<td>L-Rhamnose</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>NR</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Sucrose</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>NR</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>N-Acetylglucosamine</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>NR</td>
<td>NR</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Salicin</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>NR</td>
<td>NR</td>
<td>+</td>
<td>−</td>
</tr>
</tbody>
</table>

*Data from Busse et al. (2005).
†Data from Takeuchi et al. (2001).

Results from 16S rRNA gene sequence analysis, DNA–DNA relatedness, physiological and biochemical tests indicated genotypic and phenotypic differences between strain K4T and other *Sphingomonas* species. For these reasons, it is concluded that strain K4T (=KCTC 22050T=DSM 19475T) represents a novel species of the genus *Sphingomonas*, for which the name *Sphingomonas aestuarii* sp. nov. is proposed.

Description of *Sphingomonas aestuarii* sp. nov.

Sphingomonas aestuarii (a.es.tu.a’ri.i. L. gen. n. aestuarii of a tidal flat).

Cells are Gram-negative, non-motile, non-spore-forming and rod-shaped, forming yellow, round colonies with a diameter of 1.0 mm after 2 days incubation on R2A agar plates at 30 °C. Growth also occurs on TSA, LA, MA and NA. Growth occurs at 0–5% (w/v) NaCl and 20–35 °C, with optimal growth occurring at 0% (w/v) NaCl and 30 °C. Nitrate is not reduced to nitrite, indole is not produced and glucose fermentation does not occur. Catalase- and oxidase-positive and arginine dihydrolase- and urease-negative. Gelatin hydrolysis occurs, but starch hydrolysis does not. According to the API 20NE and API.
50CH systems, D-glucose, D-fructose, D-mannose, amygdalin, arbutin, aucubin, cellobiose, maltose, starch, gentiobiose, turanose and 5-ketogluconate are assimilated, but glycero1, erythritol, D-arabinose, L-arabinose, D-ribose, D-xyllose, L-xyllose, D-adonitol, methyl-β-D-xylloside, D-galactose, L-sorbose, L-rhamnose, dulcitol, inositol, D-mannitol, D-sorbitol, methyl-α-D-mannoside, methyl-α-D-glucoside, N-acetylglucosamine, salicin, D-lactose, melibiose, sucrose, trehalose, inulin, melezitose, raffinose, glycogen, xylitol, D-lyxose, D-tagatose, D-fucose, L-fucose, D-arabitol, L-arabitol, gluconate, 2-ketogluconate, potassium gluconate, capric acid, adipic acid, malate, trisodium citrate and phenylacetic acid are not assimilated. Assays using the API ZYM system demonstrated activities for alkaline phosphatase, esterase (C4), esterase lipase (C8), leucine arylamidase, valine arylamidase, cystine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase, β-galactosidase, α-glucosidase and β-glucosidase. In contrast, lipase (C14), trypsin, α-chymotrypsin, α-galactosidase, β-glucuronidase, N-acetyl-β-glucosaminidase, α-mannosidase and α-fucosidase activities were not observed. Predominant fatty acids are C18:1ω7c, 11-Me-C18:1ω7c and C16:0. Also present are C14:0, C15:0, C14:0 2-OH, summed feature 3 (containing C16:1ω7c and/or iso-C15:0 2-OH), C16:1ω5c, C15:0 2-OH, C17:1ω6c, C17:0, C18:0ω5c and C18:0. The polar lipid fraction consists of DPG, PC, PE, PG, SGL and PL. The polyamine pattern contains the predominant compound sym-homospermidine.

The type strain is K4T (=KCTC 22050T=DSM 19475T), isolated from tidal flat sediment in Yeosu (34° 47' 26" N 127° 34' 01" E), Korea.

Acknowledgements

We are grateful to Hans-Jürgen Busse for analysis of the polyamine pattern and to Jean P. Euzéby for etymological advice. This work was supported by the CAER (Center for Aquatic Ecosystem Restoration) of the Eco-STAR project, the 21C Frontier Microbial Genomics and Application Center Program, the Eco-Technopia 21 project and the Environmental Biotechnology National Core Research Center (KOSEF: R15-2003-012-02002-0).

References

