**Lactobacillus nodensis** sp. nov., isolated from rice bran

Tomoko Kashiwagi, Tomonori Suzuki and Takashi Kamakura

Department of Applied Biological Science, Tokyo University of Science, Chiba 278-8510, Japan

Gram-positive, rod-shaped, non-motile lactic acid bacteria, strains iz4b-1\(^T\), iz4b-2 and iz4c-1, were isolated in an attempt to study the composition of the *Lactobacillus* flora of Japanese pickles. Analysis of their 16S rRNA gene sequences revealed that the strains clustered in the *Lactobacillus alimentarius* group, and comparatively high similarities were shown to *Lactobacillus tucceti* CECT 5920 (97.0 %), *Lactobacillus versmoldensis* KU-3\(^T\) (96.4 %) and *Lactobacillus nantensis* LP33\(^T\) (94.4 %). DNA–DNA hybridization assays clearly revealed that the isolates represented a novel taxon. The DNA G+C content was 40.6 mol% and the peptidoglycan type was L-Lys–D-Asp. Thus, these isolates represent a novel *Lactobacillus* species, for which the name *Lactobacillus nodensis* sp. nov. is proposed. The type strain is iz4b-1\(^T\) (=DSM 19682\(^T\) = JCM 14932\(^T\)).

Lactic acid bacteria (LAB) play important roles in vegetable fermentations by producing lactic acid and/or alcohol, which improve the taste of pickles and help to preserve them. Many kinds of LAB, such as *Lactobacillus plantarum*, *Lactobacillus brevis*, *Leuconostoc mesenteroides* and *Pediococcus acidilactici*, are found widely in the various stages of fermentation. We have studied the LAB flora of a Japanese homemade pickle called nuka-zuke, which is made by pickling vegetables and rice bran paste, and isolated 103 strains from 15 independent pickle samples. 16S rRNA gene sequences of all the isolates were analysed and three strains, iz4b-1\(^T\), iz4b-2 and iz4c-1, showed low levels of sequence similarity to any other established species. Therefore, additional tests were performed to determine whether these three strains represented a novel *Lactobacillus* species.

The strains were isolated from nuka-zuke made in Utsunomiya city, Tochigi prefecture, Japan. Samples were homogenized in 0.85 % NaCl solution, serially diluted and spread on MRS (Oxoid) agar plates. Plates were incubated at 30 °C for 48 h. Colonies were picked and isolates were grown routinely in MRS broth or agar and maintained at −80 °C as glycerol stocks.

Chromosomal DNA was extracted as described by Pitcher et al. (1989) and used as a template for 16S rRNA gene sequence amplification. Primers 8f (5′-AGAGTTTGTGAT-CCTGAGCAG-3′) and 1540r (5′-AAGGAGGTGATAC-GCCGGA-3′) were used for PCR (Endo & Okada, 2005). The PCR products were purified using QIAquick PCR purification kit (Qiagen) according to the manufacturer’s instructions. Cycle sequencing was performed with a BigDye Terminator v3.1 cycle sequencing kit (Applied Biosystems) and seven primers listed in Endo & Okada (2005). The sequences were analysed and the closest recognized relatives of the isolates were searched for in the NCBI database using the BLAST program (http://www.ncbi.nlm.nih.gov/BLAST/). Sequences representing the closest matches were retrieved and then aligned using the CLUSTAL W program (Thompson et al., 1994). All sequences used in the reconstruction of the phylogenetic tree were approximately 1560 bp long. A distance matrix was calculated using Kimura’s two-parameter model (Kimura, 1980). Phylogenetic trees were constructed with the neighbour-joining method as described by Saitou & Nei (1987) and the maximum-parsimony method as described by Felsenstein (1978) using the software package MEGA version 4.0 (Tamura et al., 2007) and the maximum-likelihood method (Felsenstein, 1981) using PHYLIP version 3.67 (Felsenstein, 2007). Statistical significance of groupings was estimated by bootstrapping (1000 replications). The maximum-parsimony and maximum-likelihood trees are available as Supplementary Figs S1 and S2 in IJSEM Online.

The G+C contents of the strains were determined by HPLC as described by Katayama-Fujimura et al. (1984). DNA–DNA hybridizations were carried out in triplicate as described by Ezaki et al. (1988, 1989). Salmon sperm DNA was used as a control. The peptidoglycan type was determined as described by Schleifer & Kandler (1972) and Schleifer (1985).
Cell morphology of the strains was observed by phase-contrast microscopy. Determination of Gram reactions was performed using a Favor G 'Nissui' kit (Nissui) following the manufacturer's instructions. Sugar-fermentation patterns were assessed using the API 50 CHL system (bioMérieux) after diluting the colonies with saline. Lactic acid configuration was determined using a DL-lactate test kit (Boehringer Mannheim). Catalase activity was determined by transferring fresh colonies from MRS agar to 1.5 ml tubes containing 5 % H₂O₂. The production of gas from glucose was assayed by cultivation of the bacteria in tubes covered with 2 % agar plugs above the MRS broth.

Partial 16S rRNA gene sequences (about 1560 bp) were obtained from strains iz4b-1ᵀ, iz4b-2 and iz4c-1. Values of sequence similarity indicated that the closest neighbours of strain iz4b-1ᵀ were 'Lactobacillus tucceti' CECT 5920 (97.0 %), Lactobacillus versmoldensis KU-3ᵀ (96.4 %) and Lactobacillus nantensis LP33ᵀ (94.4 %). They belong to the Lactobacillus alimentarius group (Fig. 1). The sequence similarity between strain iz4b-1ᵀ and strains iz4b-2 and iz4c-1 was 99.7 and 99.5 %, respectively.

Partial 16S rRNA gene sequences (about 1560 bp) were obtained from strains iz4b-1ᵀ, iz4b-2 and iz4c-1. Values of sequence similarity indicated that the closest neighbours of strain iz4b-1ᵀ were 'Lactobacillus tucceti' CECT 5920 (97.0 %), Lactobacillus versmoldensis KU-3ᵀ (96.4 %) and Lactobacillus nantensis LP33ᵀ (94.4 %). They belong to the Lactobacillus alimentarius group (Fig. 1). The sequence similarity between strain iz4b-1ᵀ and strains iz4b-2 and iz4c-1 was 99.7 and 99.5 %, respectively.

Strains iz4b-1ᵀ, iz4b-2 and iz4c-1 showed high levels of DNA–DNA hybridization values (90–98 %) to one another, while the type strain iz4b-1ᵀ showed low levels of DNA–DNA relatedness to 'L. tucceti' CECT 5920 (9, 14 and 19 %; Supplementary Table S1). The DNA G+C content of strain iz4b-1ᵀ was 40.6 mol% and that of 'L. tucceti' CECT 5920 was 35.9 mol%. This value is within the range reported for the genus Lactobacillus (32–53 mol%) by Kandler et al. (1983). The peptidoglycan type of strain iz4b-1ᵀ was L-Lys–D-Asp, which is the major type in the L. alimentarius group (Chennell et al., 2005). Thus, we conclude that the three isolates belong to the same taxon in the L. alimentarius group and that the taxon is differentiated from known Lactobacillus species (Johnson, 1973; Stackebrandt & Goebel, 1994). We are planning additional analysis to identify differences between the three strains.

Physiological and biochemical characteristics of strain iz4b-1ᵀ, 'Lactobacillus tucceti' CECT 5920 and L. versmoldensis DSM 14857ᵀ are listed in Table 1. Strains iz4b-1ᵀ, iz4b-2 and iz4c-1 showed almost the same patterns of sugar fermentation with the exception of D-ribose. On the basis of phylogenetic and phenotypic results, strain iz4b-1ᵀ is proposed as the type strain of a novel species, Lactobacillus nodensis sp. nov.

**Description of Lactobacillus nodensis sp. nov.**

*Lactobacillus nodensis* (no.den’sis. N.L. masc. adj. *nodensis* referring to Noda, the city in which the bacterium was originally isolated).

Cells are Gram-positive, non-motile, non-spore-forming rods, 1.8 × 5 μm in size, occurring singly or in pairs. After anaerobic growth at 30 °C for 48 h, colonies on MRS agar are 1 mm in diameter, round with rough surfaces. Catalase-negative. Obligately homofermentative; gas is not produced from glucose. Both D- and L-lactic acid are produced from glucose. Growth occurs at 15–37 °C but not at 45 °C. Growth occurs at pH 4.0 but not at pH 2.6. Grows in the presence of up to 15 % NaCl in MRS broth. Acid is produced from D-arabinose, D-ribose (strain-dependent weak reaction), D-galactose, D-glucose, D-fructose, D-mannose, N-acetylglucosamine and aesculin. No acid is produced from erythritol, L-arabinose, D-xylose, adonitol, methyl β-D-xyloside, sorbose, rhamnose, cellobiose, maltose, lactose, melibiose, sucrose, trehalose, melezitose, raffinose, gentiobiose, turanose, D-lyxose, D-tagatose, DL-fucose, DL-arabitol, glycerol, dulcitol, inositol, mannitol, sorbitol, methyl α-D-mannoside, methyl α-D-glucoside, amygdalin, arbutin, salicin, inulin, starch, glycogen, xylitol, glyconate, 2-ketogluconate or 5-ketogluconate. The DNA G+C content of the type strain is 40.6 mol%. The peptidoglycan is of the L-Lys–D-Asp type.

The type strain is strain iz4b-1ᵀ (= DSM 19682ᵀ = JCM 14932ᵀ). The type strain and reference strains iz4b-2 and iz4c-1 were isolated from Japanese pickles collected in Utsunomiya city, Tochigi prefecture, Japan.
Table 1. Phenotypic characteristics of strain iz4b-1T and closely related species in the L. alimentarius group

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth at/in:</td>
<td></td>
</tr>
<tr>
<td>15 °C</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td></td>
<td></td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>45 °C</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>10 % NaCl</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td></td>
<td></td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>ND</td>
<td>–</td>
</tr>
<tr>
<td>Isomeric type of lactate Acid production from:</td>
<td></td>
</tr>
<tr>
<td>d-Arabinose</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>d-Ribose</td>
<td>w*</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>W</td>
</tr>
<tr>
<td>d-Mannose</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td></td>
<td>ND</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rhamnose</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>d-Mannitol</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Maltose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>W</td>
<td>+</td>
<td>W</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>d-Fucose</td>
<td>–</td>
<td>+</td>
<td>ND</td>
<td>–</td>
<td>ND</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Melibiose</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>D-Asp</td>
</tr>
</tbody>
</table>

*Strain iz4c-1 was negative for d-ribose.

Acknowledgements

We are grateful to the sample supplier, Masumi Izawa. We are also grateful to Hiroshi Murata, Tokyo University of Science, and Soichiro Hyodo and Dr Makoto Kimura of the RIKEN Institute for their advice and support.

References


