Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormone-degrading gammaproteobacterium

Michael Fahrbach,1 Jan Kuever,2 Markko Remesch,2 Birgit E. Huber,3 Peter Kämpfer,4 Wolfgang Dott5 and Juliane Hollender1

Correspondence
Juliane Hollender
juliane.hollender@eawag.ch

1Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstr. 133, PO Box 611, CH-8600 Dübendorf, Switzerland
2Bremen Institute for Materials Testing, Foundation Institute for Materials Science, Paul-Feller-Str. 1, D-28199 Bremen, Germany
3Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Vienna, Austria
4Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26–32 (IfZ), D-35392 Giessen, Germany
5Institute of Hygiene and Environmental Medicine, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany

A denitrifying bacterium, designated strain FS1T, was isolated from anoxic digested sludge on oestradiol [17b-oestra-1,3,5(10)-triene-3,17-diol] or testosterone (17b-hydroxyandrost-4-en-3-one) as the sole source of carbon and energy with nitrate as the electron acceptor. Strain FS1T represents the first known bacterium to grow anaerobically on both oestradiol (C-18) and testosterone (C-19). Steroidal hormones were degraded completely by nitrate reduction to dinitrogen monoxide, which was further reduced to dinitrogen in stationary-phase cultures. Gram-negative cells were slightly curved rods, 0.3–0.5 × 0.6–1.6 μm in size, motile, non-fermentative, non-spore-forming and catalase- and oxidase-positive, showing optimal growth at pH 7.0, 28 °C and 0.1 % (w/v) NaCl. Beside steroidal hormones, the bacterium utilized only a narrow range of organic substrates with nitrate as the electron acceptor, including several fatty acids and glutamate. No aerobic or anaerobic growth occurred on liquid or solid complex media. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain FS1T has no known close relatives and represents a distinct lineage within the Gammaproteobacteria. Together with the genera Nevskia, Hydrocarboniphaga, Solimonas and Sinobacter (less than 88 % 16S rRNA gene sequence similarity to strain FS1T), it forms a phylogenetic cluster separated from the families Chromatiaceae, Ectothiorhodospiraceae and Xanthomonadaceae.

The quinone system of strain FS1T consisted exclusively of ubiquinone Q-8. The dominant polar lipids were diphasphatidylglycerol and phosphatidylethanolamine. Spermidine in combination with putrescine and traces of sym-homospermidine were the basic polyamines. The major fatty acids detected in testosterone- or heptanoate-grown cells were C15:0 and C17:1ω8c, minor hydroxylated fatty acids were C11:0 3-OH and C12:0 3-OH. The G+C content of the DNA was 61.9 mol%. Based on the high 16S rRNA gene sequence divergence and different phenotypic properties from previously described gammaproteobacteria in combination with chemotaxonomic data, strain FS1T is considered to represent a new genus and species, for which the name Steroidobacter denitrificans gen. nov., sp. nov. is proposed. The type strain of Steroidobacter denitrificans is FS1T (=DSM 18526T =JCM 14622T).

During the last decade, the endocrine-disrupting activity of steroidal hormones has been recognized as a potential risk to the fertility of wildlife populations in aquatic ecosystems (Jobling et al., 1998; Sumpter & Johnson, 2005; Thomas et al., 2002). Concerns over the potential negative ecological effects of steroidal hormones from human- and animal-derived wastes has resulted in increased

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain FS1T is EF605262.
interest in the biodegradation of these compounds in soil, sediment and manure and during wastewater treatment (Andersen et al., 2003; Colucci et al., 2001; Hanselman et al., 2003; Jacobsen et al., 2005; Jenkins et al., 2003, 2004; Jürgens et al., 2002; Layton et al., 2000). Several aerobic bacteria are able to use steroidal hormones as growth substrates (Fujii et al., 2003; Yoshimoto et al., 2004; Sih & Whitlock, 1968; Talalay et al., 1952). Anaerobic degradation of steroidal hormones is considered to be incomplete under different redox conditions, and would lead to an accumulation in anoxic habitats (Czajka & Londry, 2006; Jürgens et al., 2002). It has been found that denitrification is an important treatment step in the sewage sludge process for removing natural steroidal hormones (Andersen et al., 2003; Joss et al., 2004). Recently, a novel denitrifying bacterium, Denitratisoma oestradiolicum, belonging to the betaproteobacterial family Rhodocyclaceae, which degrades oestradiol [17β-oestra-1,3,5(10)-triene-3,17-diol] by nitrate reduction, has been isolated from activated sludge (Fahrbach et al., 2006). In this study, we describe and classify a novel denitrifying gammaproteobacterium, strain FS(T), which was enriched and isolated from anoxic digested sludge using oestradiol or testosterone (17β-hydroxyandrosten-4-ene-3-one) as the sole energy and carbon source and nitrate as the electron acceptor.

Anoxic cultivation techniques have been used in this study (Widdel & Bak, 1992). The composition and the preparation of dioxoygen-free, steroidal hormone-containing mineral medium for routine cultivation conditions was described previously (Fahrbach et al., 2006). Media used for quantitative experiments with strain FS(T) contained freshly prepared sodium ascorbate (4 mM) as a reductant, which did not serve as a growth substrate. An enrichment culture with 1 mM oestradiol as the sole energy source and 5 mM nitrate as the electron acceptor was established by inoculating mineral medium with 5 ml anoxic digested sludge from a municipal wastewater-treatment plant (Aachen, Germany). A pure culture was obtained by repeated serial dilution series with either 1 mM oestradiol or 1 mM testosterone and 5 mM nitrate in combination with two testosterone agar dilution series prepared according to the protocol of Widdel & Bak (1992). The almost water-insoluble testosterone was added to the nitrate-containing agar medium from a sterile and anoxic stock solution (50 mM testosterone dissolved in DMSO) to obtain a final concentration of 1 mM. After 4–6 weeks, gas production started and small (approx. 1 mm in diameter) yellow–brown, disc-shaped colonies of strain FS(T) appeared in the agar medium and were picked and transferred into liquid mineral medium. Purity was checked microscopically and by growth tests in medium containing 5 mM fumarate, 5 mM pyruvate, 0.05% (w/v) yeast extract, 0.07 g peptone 1−1, oestradiol or testosterone. In addition, liquid R2A medium or R2A agar, CASO agar or CASO-Bouillon (all from Merck) or nutrient broth (Difco) were also used for purity tests. These complex media were employed either undiluted or as tenfold and hundredfold dilutions. The latter media were also used to test for aerobic growth of strain FS(T). Furthermore, aerobic growth of strain FS(T) was tested with 1 mM oestradiol or 1 mM testosterone in potassium phosphate-buffered mineral medium (20 mM, pH 7.2). For the determination of the temperature range/optimum under denitrifying conditions, 5 mM heptanoate was used as growth substrate in bicarbonate-buffered mineral medium containing 5 mM nitrate. The pH range/optimum was determined in either bicarbonate-buffered or HEPES-buffered (10 mM) mineral medium with 5 mM heptanoate and 5 mM nitrate. Gram type was determined according to Süßmuth et al. (1987) and with the KOH test described by Gregersen (1978). Staphylococcus epidermidis DSM 1798 and Nitrosomonas europaea ATCC 19718 were used as controls. Cytochrome-oxidase testing was determined with a Merck Bactident oxidase strip. Detection of catalase activity was carried out using a standard method (Gerhardt et al., 1994). Cell morphology was observed by phase-contrast microscopy with a Leitz microscope and a Philips XL 30 ESEM FEG scanning electron microscope at 20 kV according to a modified method of Bruce et al. (1999). For maintenance, stock cultures grown on either oestradiol or testosterone and nitrate were stored at 4 °C and transferred every 4–8 weeks. Long-term storage of bacteria was achieved as stocks in glycerol (10%, v/v) at −80 °C under oxic conditions.

Growth experiments were performed in butyl rubber-sealed 150 or 320 ml infusion bottles containing 100 or 200 ml mineral medium under a He/CO2 (80:20, v/v) atmosphere in order to quantify dinitrogen monoxide and dinitrogen. Oestradiol (1 mM) was added in the form of crystals as the sole source of carbon and energy together with 5 mM nitrate as the electron acceptor. The medium was prereduced with 4 mM sodium ascorbate and inoculated (3%, v/v) with an oestradiol-grown preculture. Nitrate and nitrite were analysed with a Dionex DX-100 ion chromatograph with conductivity detection, using an AS14 anion-exchange column (250 × 4 mm i.d.). The eluent was 1 mM NaHCO3 and 3.5 mM Na2CO3 with a flow rate of 1.0 ml min−1. Limits of quantification were at least 16 μM nitrate and 2 μM nitrite. Dinitrogen monoxide and dinitrogen in the headspace of cultures were quantified with a Perkin Elmer Autosystem gas chromatograph with thermal conductivity detector equipped with an Alttech CTR-1 column. The carrier gas was helium at a flow rate of 62.5 ml min−1. The column temperature was set at 40 °C isothermal. Injector and detector temperatures were 65 and 140 °C, respectively. Gas samples of 100 μl volume were taken from the assays with a gas-tight syringe. Amounts of gas measured in the headspace were corrected by adding calculated amounts of dissolved gas, using the adapted Bunsen coefficient (D’Ans & Lax, 1983). After extraction with ethyl acetate, the steroidal hormones oestradiol, oestrone [3-hydroxyoestra-1,3,5(10)-triene-3-one], testosterone and 4-androstene-3,17-dione were analysed by reversed-phase HPLC using an Agilent HP1100 system.
Steroidobacter denitrificans gen. nov., sp. nov.

with UV-Vis diode array (210 nm for oestrogens, 244 nm for androgens) and fluorescence (excitation 220 nm and emission 315 nm only for oestrogens) detectors in series. Separation was achieved at 35 °C on a Thermo HyPurity C-18 column (150 × 2.1 mm i.d.; particle size 3 μm) with a flow rate of 0.2 ml min⁻¹. An acetonitrile–water gradient, from 20 to 95% acetonitrile in 16 min, was applied. Growth could be assayed as increase in protein content assuming that 50% of the dry cell weight is protein. Since the measurement of optical density was not possible in cultures growing on crystalline steroid hormones, increase in cell mass was monitored by protein determination as follows. Culture samples were centrifuged at 14 000 r.p.m. The pellet was resuspended in 0.5 M NaOH and boiled for 10 min. After centrifugation, an aliquot was analysed according to Bradford (1976) using the Bio-Rad protein assay. BSA standards were prepared in 0.5 M NaOH due to interference of the latter with the protein assay reagent. Obtained concentrations were corrected to account for a twofold higher response of the assay reagent to BSA in comparison with other proteins according to the manufacturer's instructions.

Polar lipids were extracted and analysed by two-dimensional TLC according to Tindall (1990a, b) and Altenburger et al. (1996). Polyamines were extracted and analysed by HPLC as described by Busse & Auling (1988) and Stolz et al. (2007). Respiratory quinones were analysed according to Tindall (1990b) and Stolz et al. (2007). The fatty acid profile of strain FSᵀ (method according to Kämpfer & Kroppenstedt, 1996) was analysed from biomass obtained after growth on 1 mM testosterone or 2.5 mM heptanoate with nitrate as the electron acceptor. The G+C content of the DNA was analysed at the Identification Service of the Deutsche Sammlung von Mikroorganismen und Zellkulturen (Braunschweig, Germany) using the HPLC method and conditions as described by Mesbah et al. (1989) and Tamaoka & Komagata (1984). Purification and enzymic digestion of the DNA was performed according to Cashion et al. (1977) and Mesbah et al. (1989).

The 16S rRNA gene was amplified as reported previously (Kuever et al., 2001). Sequencing was performed by AGOWA (Berlin, Germany). The 16S rRNA gene sequence of strain FSᵀ (1407 nt) was compared to the NCBI database (http://www.ncbi.nlm.nih.gov) using the BLAST tool (Altschul et al., 1997). Sequences that were not included in the ARB database were loaded into the database and aligned using the ARB_ALIGN tool (Ludwig et al., 2004). The alignment was inspected visually and corrected manually using the sequence editor ARB_EDIT. Phylogenetic analysis was done using the ARB software package (version 06.08.08; http://www.arb-home.de) in combination with the PHYML software package (Guindon & Gascuel, 2003). Tree topologies were evaluated by maximum-likelihood, parsimony and neighbour-joining analysis and were used for the construction of a consensus tree without using any filters. Sequences of at least 1400 nt were used for the calculation of different trees.

Cells of strain FSᵀ were Gram-negative, slightly curved rods with rounded ends (0.3–0.5 × 0.6–1.6 μm) (Fig. 1). They occurred singly or in pairs and were motile by means of one polar flagellum. Further characteristics are listed in the species description. Anaerobic degradation of oestradiol, oestrone, testosterone or 4-androstene-3,17-dione with nitrate as the electron acceptor represents a hitherto-undescribed physiological property in bacteria. The oestradiol degradation time-course shown in Fig. 2 indicates that nitrate was reduced stoichiometrically to dinitrogen monoxide. Nitrite accumulation was not detected. Analysis of stationary-phase cultures of strain FSᵀ revealed that dinitrogen monoxide could be further reduced to dinitrogen after the nitrate was completely consumed. Since oestradiol is almost water-insoluble, its consumption could not be measured continuously by HPLC in time-course analyses (Fig. 2). Therefore, oestra-diol oxidation by nitrate reduction was quantified in experiments with 100 ml cultures containing 500 μmol nitrate but different amounts of oestradiol (0–100 μmol). Cell dry mass production increased with the amount of steroid provided, and the amount of consumed nitrate was in good agreement with the amounts of dinitrogen monoxide formed. For example, synthesis of 51.0 mg cell dry mass l⁻¹ can account for the consumption of 53.3 μmol oestradiol and 449.3 μmol nitrate and the production of 219.0 μmol dinitrogen monoxide at the end of the exponential growth phase. The dissimilation equation of oestradiol is as follows:

\[
\text{C}_{18}\text{H}_{24}\text{O}_2 + 23\text{NO}_3^- + 23\text{H}^+ \rightarrow 18\text{CO}_2 + 11.5\text{N}_2\text{O} + 23.5\text{H}_2\text{O}
\]

Testosterone was also shown to be degraded completely by strain FSᵀ (data not shown). Interestingly, strain FSᵀ also grew aerobically on testosterone or 4-androstene-3,17-dione but not on oestradiol or oestrone, as is the case for the obligately aerobic betaproteobacterium *Comamonas testosteroni* (Levy & Talalay, 1959; Sih & Whitlock, 1968).

Fig. 1. Scanning electron micrograph of cells of strain FSᵀ grown on 1 mM testosterone and 5 mM nitrate. Original magnification, ×15 000. Bar, 2 μm.
Strain FST was isolated from anoxic digested sludge, but the physiological role of this isolate during anaerobic sludge treatment is far from clear. In addition, the temperature range for growth of strain FST is 20–38 °C (optimum at 28 °C), far below the average temperature of 38 °C that prevails in anoxic sludge digesters. Many bacteria, including strain FST, could be discharged into nitrate-free anoxic sludge digesters via excessewage sludge from biological treatment.

Phylogenetic analysis revealed that strain FST represents a separate line of descent within the *Gammaproteobacteria*. All available 16S rRNA gene sequences of type species belonging to the gammaproteobacterial families *Chromatiaceae*, *Ectothiorhodospiraceae* and *Xanthomonadaceae* and the type species of several other genera were selected for this analysis (Fig. 3). A distant relationship of about 88 % 16S rRNA gene sequence similarity exists with the genera *Nevskia* (87.8 % 16S rRNA gene sequence similarity with the type strain of the type species), *Hydrocarboniphaga* (87.5 %), *Solimonas* (87.2 %) and *Sinobacter* (87.6 %), which cluster together with strain FST (Fig. 3). In addition to the high sequence divergence of the 16S rRNA gene, these genera possess different morphological and physiological characteristics (Table 1). No members of these genera are known to perform anaerobic metabolism of steroids while using nitrate as the electron acceptor which is then reduced to dinitrogen monoxide and further to dinitrogen. Denitrification is absent in these bacteria. Also, strain FST could not grow on liquid or solid complex media. *Hydrocarboniphaga* strains showed an unusual appearance of colonies on various solid complex media and grow aerobically on aliphatic hydrocarbons (C\textsubscript{6}–C\textsubscript{19}) or other organic compounds (Palleroni *et al.*, 2004). Members of the genus *Hydrocarboniphaga* can be distinguished from strains of the genus *Nevskia* due to the property of the latter to form rosette-like colonies at air–water interfaces (Stürmeyer *et al.*, 1998). *Nevskia*, *Solimonas* and *Sinobacter* species are also strictly aerobic bacteria (Kim *et al.*, 2007; Zhou *et al.*, 2008), but members of the latter genera, together with strain FST, possessed narrow nutritional spectra. The major cellular fatty acids of testosterone- or heptanoate-grown cells of strain FST comprised C\textsubscript{15}:0 and C\textsubscript{17}:1\text{\textomega}7\text{c}, whereas C\textsubscript{18}:1\text{\textomega}7\text{c}, C\textsubscript{16}:0, i-C\textsubscript{16}:0 and summed feature 3 (C\textsubscript{16}:1\text{\textomega}7\text{c} and/or iso-C\textsubscript{15}:0 2-OH) predominated in the genera *Nevskia*, *Hydrocarboniphaga*, *Solimonas* and *Sinobacter*. Larger amounts of C\textsubscript{16}:0 and summed feature 3 along with 10-methyl C\textsubscript{16}:0 were detected in testosterone-grown cells of strain FST. The complete fatty acid pattern of strain FST is listed in the species description. Ubiquinone Q-8 was the only quinone detected, which is a characteristic trait of many other gammaproteobacteria (Yokota *et al.*, 1992). Strain FST displayed a profile consisting of diphasphatidylglycerol and phosphatidylethanolamine as the major polar lipids, moderate amounts of phosphatidylglycerol, an unknown phospholipid (PL2) and an unknown aminophospholipid (APL) and minor to trace amounts of another unknown phospholipid (PL1), two unknown aminolipids and two unknown polar lipids (Fig. 4). The polyamine pattern of strain FST consisted of the predominant component spermidine [15.3 μmol (g dry weight)−1], a minor amount of putrescine [2.8 μmol (g dry weight)−1] and traces of sym-homospermidine [0.6 μmol (g dry weight)−1], 1,3-diaminopropane [0.2 μmol (g dry weight)−1] and spermine [0.09 μmol (g dry weight)−1]. Among gammaproteobacteria, a polyamine pattern with the predominant compound spermidine has been reported for several genera such as *Alteromonas*, *Arenimonas*, *Arhodomonas*, *Aquamonas*, *Chromatiun*, *Chromohalobacter*, *Cobetia*, *Ectothiorhodospira*, *Ferrimonas*, *Halomonas*, *Idiomarina*, *Marinobacter*, *Marinobacterium*, *Marinospirillum*, *Methylphaga*, *Morexella*, *Oceanobacterium*, *Pseudoalteromonas*, *Pseudospirillum*, *Pseudoxanthomonas*, *Psychrobacter*, *Rhodanobacter*, *Aquimonas*, *Thioalkalivibrio*, *Thiomicrospira* and *Thiovirga*, but so far only a few taxa have been reported to contain minor to trace amounts of *sym*-homospermidine (*Legionella*, *Beggiatoa*, *Chromatiun*) (Busse & Auling, 1988; Auling *et al.*, 1991; Hamana & Takeuchi, 1998; Hamana *et al.*, 2000, 2007; Young *et al.*, 2007), and the combination of the two has only been reported in *Allochromatium vinosum* (formerly *Chromatium vinosum*, Imhoff *et al.*, 1998).

From the results presented, it is obvious that strain FST represents a novel taxon within the *Gammaproteobacteria*. Strain FST was therefore placed in a new genus *Steroidobacter* gen. nov. as the type strain of *Steroidobacter*.
denitrificans gen. nov., sp. nov. This conclusion is based on 16S rRNA gene sequence analysis in combination with chemotaxonomic and physiological data.

Description of Steroidobacter gen. nov.

Steroidobacter (Ste.roi do.bac.ter. N.Gr. n. steroi des a steroid; N.L. masc. n. bac.ter a rod; N.L. masc. n. Steroidobacter rod-shaped bacterium that degrades steroids).

Gram-negative cells are mesophilic, neutrophilic, non-spore-forming, slightly curved rods. Chemo-organotrophs; metabolism is respiratory and non-fermentative. Exhibit reduction of nitrate to dinitrogen without any intermediate accumulation of nitrite. Utilize both oestradiol (C-18 steroid) and testosterone (C-19 steroid) as sole sources of carbon and energy with nitrate as the electron acceptor. Grow aerobically with testosterone but not with oestradiol. Grow on only a limited number of organic substrates. No aerobic or anaerobic growth on liquid or solid complex media. Nitrate, nitrite or dioxygen are used as electron acceptors, whereas sulfate, sulfite and (per)chlorate are not used. The polyamine pattern contains the major compound spermidine and the quinone system is exclusively ubiquinone Q-8. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and several unknown lipids are present.

Fig. 3. Phylogenetic relationships based on 16S rRNA gene sequences of strain F5 and type species of the gammaproteobacterial families Chromatiaceae, Ectothiorhodospiraceae and Xanthomonadaceae and of several other genera. No 16S rRNA gene sequences are available for the type species of the genera Thiospirillum, Thiopedia and Nitrosococcus. The tree is based on maximum-likelihood analysis (mHMM) using bootstrap values (≥ 50 %) based on 100 replications and the HKY model (Hasegawa et al., 1985) and further additional information retrieved from neighbour-joining and parsimony tree topologies. Bar, 10 % sequence divergence.
Table 1. Phenotypic characteristics of strain FST in comparison with the closest related genera

Species of all genera listed are negative for Gram stain and are motile by a single flagellum of polar insertion with the exception of Solimonas and Sinobacter, which are non-motile. Data for reference genera were taken from Stürmeyer et al. (1998), Palleroni et al. (2004), Kim et al. (2007) and Zhou et al. (2008). It should be noted that type strain of Nevskia ramosa (Soe1T=DSM 11499T) has been designated by Stürmeyer et al. (1998) in accordance with Rule 18f of the Bacteriological Code; however, this has not yet been formally proposed. +, Positive; (+), weakly positive; −, negative; ND, not determined or no data available.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Strain FST</th>
<th>Nevskia</th>
<th>Hydrocarboniphaga</th>
<th>Solimonas</th>
<th>Sinobacter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell morphology</td>
<td>Slightly curved rods</td>
<td>Rosette-like formation of microcolonies</td>
<td>Rods</td>
<td>Pale-yellow colonies on R2A agar</td>
<td>Long rods</td>
</tr>
<tr>
<td>Distinctive morphological features</td>
<td>No growth on agar plates</td>
<td></td>
<td>Irregular-shaped colonies on agar media with swarming cells</td>
<td></td>
<td>Circular, convex and smooth colonies. Pale-yellow on LB and YT agar</td>
</tr>
<tr>
<td>Cell width × length (μm)*</td>
<td>0.3–0.5 × 0.6–1.6</td>
<td>0.7–1.1 × 1.5–2.3</td>
<td>0.75–0.85 × 1.5–2.0</td>
<td>0.3–0.5 × 0.2–0.4</td>
<td>0.3–0.4 × 2.4–2.6</td>
</tr>
<tr>
<td>DNA G+C content (mol%)*</td>
<td>61.9</td>
<td>67.8</td>
<td>60.0</td>
<td>40.5</td>
<td>65.1</td>
</tr>
<tr>
<td>Catalase</td>
<td>+</td>
<td>(+)</td>
<td>ND</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Hydroxylated cellular fatty acids</td>
<td>C\textsubscript{15:0} 3-OH, C\textsubscript{17:1ω8c}</td>
<td>C\textsubscript{18:1ω7c}, C\textsubscript{16:0} i-C\textsubscript{16:0}</td>
<td>C\textsubscript{18:1ω7c}, i-C\textsubscript{16:0} summed feature 3</td>
<td>C\textsubscript{16:0} C\textsubscript{18:1} summed feature 3</td>
<td>C\textsubscript{18:1ω7c}, C\textsubscript{16:0} summed feature 3</td>
</tr>
<tr>
<td>Denitrification</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Growth on complex media</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nutritional spectrum of organic or inorganic substrates</td>
<td>Narrow</td>
<td>Wide</td>
<td>Wide</td>
<td>Narrow</td>
<td>Narrow</td>
</tr>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetate</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>+ II</td>
<td>−</td>
</tr>
<tr>
<td>Benzoate</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>ND</td>
<td>−</td>
</tr>
<tr>
<td>Ethanol</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>DL-Lactate</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>D-Glucose</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+ II</td>
<td>+</td>
</tr>
<tr>
<td>Glutamate</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

*Values for the type strains of the type species.
†Minor components are Q-9, MK-7 and MK-6.
‡Kim et al. (2007) described summed feature 3 as C\textsubscript{16:1} iso 1 and/or C\textsubscript{14:0} 3-OH; otherwise it represents C\textsubscript{16:1ω7c} and/or iso-C\textsubscript{15:0} 2-OH.
§Detailed fatty acid profiles of Nevskia ramosa and Hydrocarboniphaga effusa were obtained from W.-J. Li (personal communication).
||Assimilated only in the presence of LB broth as growth factor.

present in the polar lipid profile. The major fatty acids of testosterone- or heptanoate-grown cells are C\textsubscript{15:0} and C\textsubscript{17:1ω8c}. The DNA G+C content of the type strain of the type species is 61.9 mol%. The type species is Steroidobacter denitrificans.

Description of Steroidobacter denitrificans sp. nov.

Steroidobacter denitrificans (de.ni.tri*ficans. N.L. v. deni-trifico to denitrify; N.L. part. adj. denitrificans denitrifying).

Exhibits the following properties in addition to those given in the genus description. Cells are motile, 0.3–0.5 μm wide and 0.6–1.6 μm long, with rounded ends, occurring singly or in pairs. Colonies in dioxyn-free agar dilution series with testosterone and nitrate are small (diameter approx. 1 mm), yellow–brown and disc-shaped. Temperature and pH ranges for growth are 20–38 °C and pH 6.1–7.8. Optimal growth conditions are 28–30 °C and pH 7.0. Only a few electron donors can be used with nitrate as the electron acceptor: oestradiol, oestrone, testosterone, 4-androstene-3,17-dione, acetate, propionate, valerate, caproate, heptanoate and glutamate. Does not utilize the following electron donors with nitrate as the electron acceptor: cholesterol, acetone, ascorbate, primary aliphatic...
alcohols (C1–C4), cyclohexanol, formate, butyrate, palmitate, stearate, isobutyrate, crotonate, adipate, DL-lactate, succinate, pyruvate, fumarate, citrate, glycerol, pentane, benzoate, (+)-d-glucose, (+)-d-galactose, sucrose, yeast extract, DMSO, ammonium and thiosulfate. No aerobic or anaerobic growth on R2A or CASO agar or on CASO-Bouillon or nutrient broth. Anaerobic growth with testosterone or 4-androstene-3,17-dione but not with oestradiol or oestrone in phosphate-buffered liquid mineral medium. The polyamine pattern contains the major compound spermidine and minor to trace amounts of putrescine, 1,3-diaminopropane, sym-homospermidine and spermine. The polar lipid profile is characterized by the major compounds diphosphatidylglycerol and phosphatidylethanolamine, moderate amounts of phosphatidylglycerol and an unknown phospholipid and an unknown aminophospholipid and minor to trace amounts of another unknown phospholipid, two unknown aminolipids and two unknown polar lipids. The fatty acid profile is as follows: in testosterone-grown cells, C9:0 (0.6 %), C10:0 (1.3 %), C11:0 (2.7 %), C12:0 (1.8 %), C13:0 (4.2 %), C14:0 (0.9 %), C15:0 (16.5 %), C16:0 (7.0 %), C17:0 (6.2 %), C15:0:08c (2.5 %), C16:1o9c (0.9 %), C17:1o8c (27.1 %), C17:1o6c (3.0 %), C18:1o7c (4.2 %), C11:0 3-OH (1.2 %), C12:0 3-OH (1.3 %), summed feature 3 (C16:1o7c and/or iso-C15:0 2-OH; 8.3 %), C16:1 iso H (0.8 %), 10-methyl C16:0 (7.0 %) and 10-methyl C17:0 (2.4 %); in heptanoate-grown cells, C9:0 (0.8 %), C10:0 (0.2 %), C11:0 (4.2 %), C12:0 (0.2 %), C13:0 (6.6 %), C15:0 (19.5 %), C16:0 (0.7 %), C17:0 (5.4 %), C15:1o8c (4.0 %), C15:1o6c (0.3 %), C17:1o8c (40.6 %), C17:1o6c (3.9 %), C18:1o7c (0.5 %), C11:0 3-OH (1.6 %), C12:0 3-OH (0.2 %), summed feature 3 (0.7 %), summed feature 1 (C15:1 iso H and/or C13:0 3-OH; 0.6 %), C16:1 iso H (1.5 %), 10-methyl C16:0 (1.5 %) and 10-methyl C17:0 (2.7 %).

The type strain, FST (DSM 18526T =JCM 14622T), was isolated from an enrichment culture inoculated with anoxic digested sludge from a municipal wastewater-treatment plant in Aachen (Germany).

Acknowledgements

The authors thank Manfred Bovi for providing facilities for electron microscopy and W.-J. Li, Yunnan University, PR China, for providing detailed fatty acid data for *Nevskia ramosa* and *Hydrocarboniphaga effusa*. This work was funded by a grant from the DFG (Deutsche Forschungsgemeinschaft) to the research training group ‘AGEESA’ (Aachen research training group elimination of endocrine-disrupting substances from wastewater) and by the Swiss National Science Foundation Project no. 113482.

References

Hamana, K., Sato, W., Gouma, K., Yu, J., Ino, Y., Umemura, Y., Mochizuki, C., Takatsuka, K., Kigure, Y. & other authors (2007). Cellular polymyine catalogues of the five classes of the phylum *Proteobacteria*: distributions of homospermidine within the class *Alphaproteobacteria*, hydroxypusretosine within the class *Betaproteobacteria*, norspermidine within the class *Gammaproteobacteria*, and spermidine within the classes *Deltaproteobacteria* and *Epsilonproteobacteria*. *Ann. Gunma Health Sci* 27, 1–16.

