Verninephrobacter eiseniae gen. nov., sp. nov., a nephridial symbiont of the earthworm *Eisenia foetida* (Savigny)

Nicolás Pinel,1 Seana K. Davidson2 and David A. Stahl1,2

1Department of Microbiology, University of Washington, Seattle, WA 98195-7242, USA
2Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195-2700, USA

A Gram-negative, flagellated, heterotrophic, catalase-negative, rod-shaped bacterium previously identified as an earthworm symbiont was isolated from nephridia of the earthworm *Eisenia foetida*. Comparisons of 16S rRNA gene sequences indicated its relatedness to the betaproteobacterial genus *Acidovorax* and the novel isolates shared 92–94 % sequence similarity with recognized species of this genus. Gene sequence phylogenies revealed that the group of earthworm symbionts formed a cohesive and independent clade. The DNA G+C content was 67.0 ± 0.2 mol%. Major fatty acids were C16:0, C16:1ω7c and C17:0 Cyclo. While capable of growing in fully aerated media, all isolates favoured low oxygen concentrations and all required biotin or a mix of amino acids in order to grow on defined mineral media. Based on phylogenies inferred from three housekeeping gene sequences (gap, *recA* and *rpoC*), DNA–DNA hybridization values, the unique ecology and the distinct physiology of the novel strains, the new genus *Verninephrobacter* gen. nov. is proposed for the earthworm nephridial symbionts. The name *Verninephrobacter eiseniae* sp. nov. is proposed for the type species with strain EF01-2T (=ATCC BAA-14891 =DSM 192862) as the type strain of the type species.

The presence of rod-shaped bacteria in the nephridia (excretory organs) of several species of lumbricol earthworms (Annelida: Oligochaeta: Crassiclitellata Jamieson, 1988; Lumbricidae Claus 1876) was initially reported in light microscopy studies by Knop (1926). Subsequent studies identified the dominant bacteria, localized predominantly in the ampullum (the medial region of the nephridial second loop), as Gram-negative organisms (Scott & Musgrave, 1971) closely related to the betaproteobacterial genus *Acidovorax* (Schramm et al., 2003). Unique 16S rRNA betaproteobacterial ribotypes have been recovered from different earthworm species. The transmission of the symbionts through deposition in the egg capsule has been recently demonstrated in the earthworm *Eisenia foetida* Savigny by Davidson & Stahl (2006).

Acidovorax-like 16S rRNA gene sequences are frequently recovered from wastewater treatment plants and other aquatic environments (Schweitzer et al., 2001; Hoshino et al., 2005; Manefield et al., 2005). The genus *Acidovorax* includes species isolated from soil and sludge (Willems et al., 1990; Schulze et al., 1999; Heylen et al., 2008), in addition to a group of plant pathogens with a varied host range (Willems et al., 1992; Gardan et al., 2000, 2003). The present study reports the isolation and characterization of a relative of the genus *Acidovorax* from the nephridia of *E. foetida*. This is the first representative of a group affiliated with the genus that forms a recognizably stable association with animal hosts. Based on the unique ecology of this organism relative to other known species of the genus *Acidovorax* and its distinct characteristics reported herein, we propose the designation of the genus

Abbreviations: ACM, *Acidovorax* complex medium; ACMP, ACM Phytage; CFA, cyclic fatty acids; CIA, chloroform-isoamyl alcohol; FAME, fatty acid methyl esters; FISH, fluorescence *in situ* hybridization; ML, maximum-likelihood; MLST, multilocus sequence typing; MP, maximum parsimony; NJ, neighbour-joining; PCIA, phenol/chloroformisoamyl alcohol; PFGE, pulsed field gel electrophoresis; PHB, polyhydroxybutyrate; TEM, transmission electron microscopy.

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequences of *Verninephrobacter eiseniae* isolates EF01-1, EF01-2T, EF02-2, EF03-1, EF03-2, EF04-1, EF05-1 and EF05-2 are DQ327662, DQ327663, DQ327664, DQ327665, DQ327666, DQ327667, DQ327668 and DQ327669, respectively. The GenBank accession numbers for the MLST sequences are EU165056–88 and EU350960.

Details of the methods used for soil DNA surveys and siderophore production and uptake are available as supplementary methods with the online version of this paper. Also available are supplementary tables giving the results of DNA-DNA hybridization studies and the pairwise sequence identities of 16S rRNA sequences. Supplementary figures show additional phylogenetic trees, the reactions in ‘deep phytagel’ tubes, vitamin requirements and siderophore production assays for the strains studied.
Verminephrobacter gen. nov. to include betaproteobacterial denizens of lumbricid earthworm nephridia. The isolates recovered from *E. foetida* are designated as representing the type species for the new genus and the name Verminephrobacter eiseniae sp. nov. is proposed.

Cultures were regularly initiated from frozen stocks and were maintained in *Acidovorax* complex medium (ACM; containing 1 M: 0.5 g yeast extract (Difco-Becton Dickinson), 1.0 g Casamino acids (Difco), 2.0 g pyruvic acid, 2.0 g l-glutamine, 0.3 g KH$_2$PO$_4$, 0.3 g MgSO$_4$ and 2.0 g MOPS, with the pH adjusted to 7.2–7.3 with 5 M KOH before autoclaving). The following gelling agents were tested: Bacto agar (Difco), Noble agar (Sigma Aldrich), agarose (JT Baker–Mallinckrodt Baker) and Phytagel (Sigma Aldrich). Only Phytagel afforded consistent isolation and growth of nephridial bacteria. Plates contained 1.5% Phytagel. Basal defined media consisted of (1 M: distilled water): 10 ml 100 × mineral salts solution (unless noted otherwise, all chemicals were obtained from Sigma Aldrich; 1 M: 250 g NaCl, 50 g KH$_2$PO$_4$, 10 g MgSO$_4$, 1 g CaCl$_2$, 1 ml SL12 trace metal solution (1 M: 3 g sodium EDTA, 1.1 g FeCl$_2$, 6 mg H$_3$BO$_3$, 190 mg CoCl$_2$, 6H$_2$O, 100 mg MnCl$_2$, 4H$_2$O, 70 mg ZnCl$_2$, 36 mg Na$_2$MoO$_4$, 2H$_2$O, 24 mg NiCl$_2$, 6H$_2$O and 2 mg CuCl$_2$, 2H$_2$O) and 1 ml 1000 × vitamin solution (1 M: 50 mg p-aminobenzoic acid, 20 mg folic acid, 50 mg nicotinic acid, 50 mg calcium pantothenate, 50 mg riboflavin, 50 mg thiamine hydrochloride, 100 mg pyridoxine, 50 mg thiotic acid, 5 mg cyanocobalamin and 1 mg biotin). The medium was buffered with 20 mM MOPS at pH 7.2–7.3. Carbon and nitrogen sources were added as appropriate.

Isolate EF01-2T was designated as the type strain of the novel isolates deposited. Strain EF05-2 was also deposited as a reference strain (=DSM 19250). The following reference strains were used for comparisons: *Acidovorax anthurii* DSM 16745T, *A.avenae* subsp. *avenae* DSM 7227T, *A.avenae* subsp. *citrulli* AAC00-1, *A. defluvii* DSM 12644T, *A. delafielldii* ATCC 17505T, *A. facilis* ATCC 11228T, *A. konjac* DSM 7481T, *A. temperans* ATCC 49665T and *A. valerianellae* DSM 16619T.

In order to isolate and quantify the nephridial bacteria, earthworms were maintained as previously described by Davidson & Stahl (2006). For dissection, specimens were anaesthetized in 1 × PBS with 4% (v/v) ethanol. The body wall was separated along a dorsal, longitudinal incision and held in place with dissection pins. The intestines were removed and the body tissues were rinsed with sterile 1 × PBS/4% ethanol. Nephridia (20–50) were removed with forceps, rinsed once in sterile 1 × PBS and pooled into a microcentrifuge tube with sterile 1 × PBS. Nephridia were crushed with a sterile micro pestle, diluted and plated. Plates were sealed with Parafilm and incubated at room temperature (~25 °C). Colonies of the predominant morphology on the highest dilution plates presenting growth were streaked for purity and incubated as above. The resulting colonies were screened by fluorescence in situ hybridization (FISH) using the *Acidovorax*-specific probe LSB145 (Schweitzer et al., 2001) and then inoculated into ACM broth. Cultures were incubated at room temperature with agitation in a rotary shaker at 250 r.p.m. After 6–10 days, the identity of the isolates was confirmed by FISH and 16S rRNA gene sequencing. Similar isolation procedures were used for the isolation of symbionts from the earthworm species *Lumbricus terrestris* and *Aporrectodea longa* (N. Pinel, unpublished).

After 15–20 days incubation at room temperature, ACM-Phytagel (ACMP) plates inoculated with the 10$^{-4}$–10$^{-5}$ dilutions from nephridial suspensions presented, almost exclusively, circular, convex colonies of 0.5–2 mm in diameter, with entire or lightly erose margins and a light bisque to peach colour. The colonies showed negative Gram staining (not shown) and positive hybridizations to the LSB145 oligonucleotide probe.

Material for the determination of the number of colony forming units (c.f.u.) per nephridium was prepared as above from four sexually mature (clitellated) worms. Serial dilutions were plated on ACMP plates in triplicate or quadruplicate. Colony counts indicated a mean bacterial density of 3.3 ± 1.9 × 105 c.f.u. per *E. foetida* nephridium.

For phylogenetic analyses, chromosomal DNA was extracted and purified by the Marmur protocol (Marmur, 1963) with the following modifications after cell lysis: the lysate was extracted once with Tris-SDS buffer-saturated phenol for 1 h (Tris-SDS buffer; 100 mM Tris/HCl pH 8.0; 50 mM EDTA pH 8.0; 100 mM NaCl; 1% w/v SDS). The aqueous phase was then extracted with phenol/chloroform-isoamyl alcohol (PCIA; 25:24:1) and chloroform-isoamyl alcohol (CIA; 24:1). DNA was precipitated with one volume of 2-propanol, resuspended in 1 × TE buffer and treated with RNase A, followed by PCIA and CIA extractions, ethanol precipitation and resuspension in 1 × TE.

The nearly complete 16S rRNA gene was amplified and sequenced according to standard methods with primers GM3 and GM4 (Muyzer et al., 1993). The resultant sequences (1455–1463 bp) for all eight isolates were aligned in ARB (Ludwig et al., 2004) against the Ribosomal Database Project (RDP) database (Cole et al., 2003) with manual refinement. The primer pairs gapf-1 (5’-AAYGYYYTYGGGCGGATC-3’)/gapr-1 (5’-CACCGG-GCATTYTCGCCAG-3’), recAf-1 (5’-GGGAAAGCCAC- ATCATG-3’)/recAr-1 (5’-CGTGTGGAGCARTACCAGGC-3’), and rpoCf-1 (5’-CTGGTCCAAGAATTCAGC-3’)/ rpoCr-1 (5’-ACCTTGTGATGCGGCTC-3’) were used to amplify and sequence fragments from glyceraldehyde-3-phosphate dehydrogenase (type I; gap; ~859 nt), recA (~716 nt) and the DNA-directed RNA polymerase, beta’ subunit (rpoC), respectively, unless the corresponding sequences were available from public databases. Interior sequencing of rpoC was achieved with primers rpoC-seqF2 (5’-AGCGCAAGGATAYGG-3’) and rpoC-seqR2 (5’-GAGCACCACACGTTCYTG-3’); sequences of 1290 nucleo-
tides were used. Sequence alignments were constructed with CLUSTAL W (Thompson et al., 1994) and refined manually. Maximum-parsimony (MP), evolutionary distance (neighbour-joining; NJ) and maximum-likelihood (ML) phylogenetic analyses were performed in PHYLIP (Felsenstein, 1989).

Among the isolated symbionts, the 16S rRNA gene sequences were 98.5 ± 0.4 % similar. The symbiont gene sequences were 94.9 ± 0.5 % similar to those of nephridial clones obtained from other earthworm species, or concatenated rpoC gene phylogenies (Fig. 1a, NJ; MP and ML not shown) allowed only limited resolution of the branching pattern within the genus. Mean 16S rRNA gene sequence similarity values among plant-pathogenic and non-symbiotic Acidovorax species ranged from 96.2–97.4 %. The E. foetida isolates formed a monophyletic group within the clade of earthworm nephridial symbionts. All 16S rRNA gene phylogenies (Fig. 1a, NJ; MP and ML not shown) supported the cohesion of the novel symbiotic group, but allowed only limited resolution of the branching pattern among the sequences examined. Three well-defined groups were supported by phylogenetic reconstructions with rpoC or concatenated recA/gap gene sequences (Fig. 1b, c and see Supplementary Fig. S1 in IJSEM Online). One of the groups encompassed the earthworm symbionts, another included most of the known plant pathogenic species of the genus Acidovorax and a third comprised most of the remaining species. The branching order of these three groups could not be confidently established (bootstrap support above 50 %) from the inferred topologies.

The DNA G+C content was determined as previously described (Mesbah et al., 1989) with the following modifications: DNA was digested with 10 U mung bean nuclease and 50 U S1 nuclease. Separation of nucleosides was performed isocratically for 15 min with a flow rate of 1 ml min⁻¹ on a mobile phase of 95 % 20 mM triethylammonium phosphate (pH 5.1)/5 % methanol, through a Zorbax SB-C18 column (4.6 × 150 mm; 5.0 μm particle size; Agilent Technologies). DNA samples from A. temperans and A. delafieldii were used as controls. The DNA G+C content (determined for isolates EF01-1, EF01-2T, EF02-2 and EF05-1) was 67.0 ± 0.2 mol%, well within the 60–72 mol% values reported for other species of the genus Acidovorax (Schulze et al., 1999; Gardan et al., 2000, 2003), and in close agreement with the 65.2 mol% observed for the genome sequence of isolate EF01-2 (unpublished observations).

DNA–DNA hybridizations were conducted with the microtitre plate technique (Ezaki et al., 1989) as described by Willems et al., (2001), and modified as follows: before labelling with photobiotin, probe DNA was fragmented through nebulizers (Invitrogen) under a stream of N₂ at a pressure of 28 p.s.i. for 1.5 min, yielding a final fragment range of 250–2000 kb. Probe DNA was labelled under direct sunlight for 1 h on ice. The hybridization temperature was 50 °C. The chromogenic substrate 2-nitrophenyl-β-galactopyranoside (ONPG) replaced the fluorogenic substrate 4-methylumbelliferone used in the original protocol. After a 30 min incubation at 37 °C, the chromogenic reactions were developed for at least 15 min with 10 µl 2 M sodium carbonate. Hybridization values were calculated from the percent absorbance at 405 nm, with the homologous reaction representing 100 %. Salmon DNA was immobilized as a background absorbance control. All hybridizations were run in triplicate wells on at least three plates. The mean standard deviation of the method was ±7.6 %. The complete results of the DNA–DNA hybridization experiments are provided in Supplementary Table S1 (see IJSEM Online). The mean DNA–DNA hybridization values were 99 ± 2 % (range 94–107 %) among all eight isolated symbionts. In contrast, mean reassociation values to type species of the genus Acidovorax ranged from 8 to 27 %. The DNA–DNA hybridization results supported the status of the isolated symbionts as representing a novel species. While Willems et al. (2001) used the reciprocal hybridizations as internal controls, we found that in some cases reciprocal hybridization gave consistently disparate values, possibly reflecting differences in genome sizes among the species included in the assays. The discrepancies did not alter the main conclusion from our results.

In order to examine the DNA molecules of the isolated strains, pulsed field gel electrophoresis (PFGE) of genomic DNA was performed on a CHEF-DR III system (Bio-Rad Laboratories). DNA plugs were prepared as per the protocol given in the instrument documentation, with ~5.0 × 10⁸ cells per agarose plug.

For detection of large extrachromosomal molecules, DNA plugs were treated with S1 nuclease as previously described (Barton et al., 1995) and examined using PFGE. The alkaline lysis miniprep protocol was used for extracting small plasmids. An extrachromosomal DNA molecule was detected in isolates EF01-1, EF01-2T, EF02-2 and EF04-1 (data not shown), which migrated as a 98 kb molecule from untreated DNA plugs and as a 35 kb molecule after S1-linearization (not shown). By sequencing the genome of isolate EF01-2, this molecule was confirmed as a circular, 31.2 kb plasmid (unpublished observations). Four extrachromosomal molecules were observed in A. temperans DNA preparations, with migration rates suggestive of 375, 155, 96 and 47 kb before, or 212, 155, 55 and 29 kb after S1 linearization, respectively (not shown). Additional extrachromosomal molecules were detected through PFGE for A. defluvii (212 and 169 kb) and A. facilis (193 kb), but only after S1 linearization. A 2.3 kb plasmid was isolated from A. defluvii (not shown).

For cellular fatty acid analysis, fatty acid methyl esters (FAME) were extracted and chromatographed by the Microbial Identification Company (MIDI; Microbial ID; Smibert & Krieg, 1994) according to standard protocols. Cultures of isolated symbionts and the type strains of A. avenae subsp. avenae, A. facilis, A. konjaci and A. temperans
(see above) were grown on ACMP plates for either 15 days (isolated symbionts) or 48 h (other strains of the genus *Acidovorax*) before biomass was collected. The differences in incubation time reflected differences in growth rate and the time required for obtaining sufficient biomass. To account for growth medium effects, results for the recognized species of the genus *Acidovorax* were compared with data from Willems *et al.* (1990, 1992). FAME peaks were identified as equivalent chain-length (ECL) and their area expressed as percentages of total peak area. Similarities were calculated using the correlation coefficient algorithm (Bousfield *et al.*, 1983) after removal of peaks with <1% total peak area. Cluster analyses were performed with the PC-ORD software package, employing the Sorensen similarity index and the UPGMA and NJ algorithms.

The fatty acid composition profiles for the eight symbiotic isolates had similarity values of $98 \pm 1\%$, while their similarity to the profiles from the *Acidovorax* species examined was $91 \pm 1\%$. The similarity to fatty acid profiles were calculated using the correlation coefficient algorithm (Bousfield *et al.*, 1983) after removal of peaks with <1% total peak area. Cluster analyses were performed with the PC-ORD software package, employing the Sorensen similarity index and the UPGMA and NJ algorithms.

Fig. 1. Neighbour-joining phylogenetic reconstructions from (a) nearly complete 16S rRNA gene sequences; (b) concatenated partial *recA/gap* nucleotide sequences; (c) partial *rpoC* nucleotide sequences. Bootstrap values were derived from 1000 replicates. Nodes with <50% bootstrap support were eliminated. Entries in bold type correspond to isolates described in this report. *Organisms associated with earthworm nephridia; **reported plant-pathogenic species of the genus *Acidovorax*. *Bordetella bronchiseptica* RB50 served as an outgroup in all reconstructions. Trees constructed with maximum-parsimony and maximum-likelihood algorithms are available as supplementary figs in IJSEM Online. *Acidovorax sp.* JS42 is misnamed in current databases; it is included as it is part of a *Verminephrobacter eiseniae* sp. nov. comparative genome analysis project (unpublished data). Bars, 1 nucleotide substitution per 100 nucleotides.
reported for other species of the family Comamonadaceae was below 90% (not shown; Willems et al., 1990, 1992; Schulze et al., 1999). The profiles obtained in this study for the type strains of the reference Acidovorax species growing on ACMP plates and those reported in the literature for the corresponding species differed by less than 1%. The dominant components included peaks with ECL values for palmitic (C16:0, 27–31%), palmitoleic (C16:1, 16–35%) and cis-9,10-methylenehexadecanoid acid (C17:0 cyclo, 9–26%); the latter being exclusive to the isolated symbionts among other reference strains (Table 1). Cyclopropanes (such as C17:0 cyclo) are derived from the corresponding unsaturated fatty acids (Grogan & Cronan, 1997), which could explain the reduction in palmitoleic acid in the novel isolates relative to the amounts found in the reference Acidovorax species. Differential expression of cyclic fatty acids (CFA) according to growth state has been observed for many organisms (Grogan & Cronan, 1997; König & Widdel, 2003) and their appearance has been hypothesized as a strategy to preserve membrane integrity during starvation (Guckert et al., 1986) as CFA are more refractory to bacterial lipases than their cis-monounsaturated acid precursors. The validity of this explanation for the novel isolates examined in this study, as well as the ability of reference species of the genus Acidovorax to synthesize CFA, remains to be determined.

Morphological and physiological traits of the novel isolates were examined as follows. The minimum doubling time attained by the isolated symbionts on ACM broth at 25 °C ranged from 6.5 to 14 h, with values distributed bimodally. Plasmid-free (see above) isolates EF03-1, EF03-2, EF05-1 and EF05-2 showed mean doubling times of 6.5 ± 0.1 h, whereas the remaining isolates showed mean doubling times of 12.1 ± 2.0 h. Doubling times for reference strains growing on ACM broth ranged from 0.7 to 2.5 h. Doubling times and growth rates were calculated as described by Fuchs & Kröger (1999).

Cell morphology was examined by phase-contrast and transmission electron microscopy (TEM). For negative staining, cells were suspended in a 10 mM MgCl₂ solution. The cell suspension was mixed with an equal volume of 2% phosphotungstic acid in water and spotted onto coated copper grids. For TEM, cells from late exponential cultures in ACM were fixed in half-strength Karnovsky's fixative (5% glutaraldehyde) in cacodylate buffer (pH 7.3); 1% OsO₄ in cacodylate buffer for 1 h, dehydrated in an ethanol series and stained with uranyl acetate and lead citrate before sectioning and TEM. For TEM of tissue sections, worms were dissected as above and processed as described by Ballinger et al. (1997) with additional post-fixation staining with 2% uranyl acetate (Ted Pella) prior to embedding. Gram staining and Nile Blue A staining for detection of cellular polyhydroxybutyrate (PDB). For negative staining and TEM, cells were fixed in a 1% osmium tetroxide solution prior to embedding. Gram staining and Nile Blue A staining for detection of cellular polyhydroxybutyrate (PDB).

Table 1. Cellular fatty acid methyl ester profiles for Verminephrobacter eiseniae sp. nov. and reference strains of the genus Acidovorax

Taxa: 1, Verminephrobacter eiseniae sp. nov. (n=8); 2, Acidovorax anthurii (n=9); 3, A. avenae subsp.avenae (n=28); 4, A. anthurii (n=4); 5, Acidovorax caeni (n=5); 6, A. defluvii (n=9); 7, A. temperans (n=12); 8, A. valerianellae (n=10); 9, Acidovorax sp. nov. (Willems et al., 1990); 10, Acidovorax sp. nov. (Heylen et al., 1999). Values are mean ± standard deviation, according to the source of the data.	ECL	1	2	3	4	5	6	7	8	9	10
C₁₀: 0 9-OH	2.7–4.5	2.5–4.3	2.4–3.0	2.3–3.4	2.2–2.4	1.6	1.6	1.6	1.6	1.6	1.6
C₁₂: 0	2.0–0.2	2.2–0.2	2.2–0.1	2.2–0.2	2.2–0.1	1.6	1.6	1.6	1.6	1.6	1.6
C₁₄: 0	4.8–8.0	4.1–6.0	4.0–5.9	3.9–5.8	3.8–5.7	3.7–5.6	3.6–5.5	3.5–5.4	3.4–5.3	3.3–5.2	3.2–5.1
C₁₆: 0	12.1–25.2	11.0–24.1	10.9–23.9	10.8–23.8	10.7–23.7	10.6–23.6	10.5–23.5	10.4–23.4	10.3–23.3	10.2–23.2	10.1–23.1
C₁₇: 0	2.5–6.5	2.2–5.0	2.1–4.8	2.0–4.6	1.9–4.4	1.8–4.2	1.7–4.0	1.6–3.8	1.5–3.6	1.4–3.4	1.3–3.2
C₁₈: 0	3.0–6.0	2.7–5.5	2.5–5.2	2.3–4.9	2.1–4.7	2.0–4.5	1.9–4.3	1.8–4.1	1.7–3.9	1.6–3.7	1.5–3.5
C₁₉: 0	3.0–6.0	2.7–5.5	2.5–5.2	2.3–4.9	2.1–4.7	2.0–4.5	1.9–4.3	1.8–4.1	1.7–3.9	1.6–3.7	1.5–3.5
C₁₇: 0 cyclo	2.5–6.5	2.2–5.0	2.1–4.8	2.0–4.6	1.9–4.4	1.8–4.2	1.7–4.0	1.6–3.8	1.5–3.6	1.4–3.4	1.3–3.2
C₁₉: 0 cyclo	2.5–6.5	2.2–5.0	2.1–4.8	2.0–4.6	1.9–4.4	1.8–4.2	1.7–4.0	1.6–3.8	1.5–3.6	1.4–3.4	1.3–3.2
C₁₇: 1 cis-9	2.5–6.5	2.2–5.0	2.1–4.8	2.0–4.6	1.9–4.4	1.8–4.2	1.7–4.0	1.6–3.8	1.5–3.6	1.4–3.4	1.3–3.2
C₁₇: 1 cis-11	2.5–6.5	2.2–5.0	2.1–4.8	2.0–4.6	1.9–4.4	1.8–4.2	1.7–4.0	1.6–3.8	1.5–3.6	1.4–3.4	1.3–3.2
C₁₈: 1 cis-9	2.5–6.5	2.2–5.0	2.1–4.8	2.0–4.6	1.9–4.4	1.8–4.2	1.7–4.0	1.6–3.8	1.5–3.6	1.4–3.4	1.3–3.2
C₁₈: 1 cis-11	2.5–6.5	2.2–5.0	2.1–4.8	2.0–4.6	1.9–4.4	1.8–4.2	1.7–4.0	1.6–3.8	1.5–3.6	1.4–3.4	1.3–3.2
C₁₉: 1 cis-9	2.5–6.5	2.2–5.0	2.1–4.8	2.0–4.6	1.9–4.4	1.8–4.2	1.7–4.0	1.6–3.8	1.5–3.6	1.4–3.4	1.3–3.2
C₁₉: 1 cis-11	2.5–6.5	2.2–5.0	2.1–4.8	2.0–4.6	1.9–4.4	1.8–4.2	1.7–4.0	1.6–3.8	1.5–3.6	1.4–3.4	1.3–3.2

http://ijs.sgmjournals.org
rate (PHB) granules were conducted as described by Smibert & Krieg (1994).

When examined by phase-contrast optics, cells from liquid cultures appeared as short, rounded rods, $1.5 \pm 0.2 \times 0.6 \pm 0.2 \mu m$ in size and single or in doublets (Fig. 2a). Active motility was not observed although cells were occasionally observed pivoting as if tethered to the glass slide by means of flagella. The presence of polar flagella was confirmed by TEM of negatively stained cells (Fig. 2b). PHB granules were observed in all isolated symbionts grown on ACM broth (not shown). Cells of the cultured symbionts were Gram-negative (not shown).

Catalase tests were performed by adding drops of 3 % (w/v) hydrogen peroxide to cell suspensions. Oxidase tests were conducted as recommended using a proprietary kit (bioMérieux). All isolated symbionts and other Acidovorax reference strains tested positive for oxidase activity. Catalase activity was positive for the Acidovorax reference strains but was undetectable for all eight of the novel isolates, irrespective of the age of the cultures.

Fig. 2. Micrographs of cells of the novel strains growing on ACM broth. (a) Phase-contrast; (b) negatively stained electron micrograph, revealing flagellated cells; (c) TEM of fixed cells, illustrating electron-light inclusions characteristic of cultured cells; (d) TEM of earthworm tissue section showing cells of *Verminephrobacter eiseniae* sp. nov. associated with the endothelial microvilli inside the nephridium. Bars, 5 \(\mu m \) (a), 0.5 \(\mu m \) (b, c, d).

Oxygen relationships were investigated through a ‘deep agar’ assay (Smibert & Krieg, 1994), modified by substituting agar with 0.4 % Phytagel and amending the ACM broth with 1 mg l\(^{-1}\) resazurin (redox indicator; E\(^0\) = −51). The tubes were incubated at room temperature (\(\sim 25^\circ C \)) for 15 days. Tested strains were cultured in duplicate in at least two different experiments. The clear-pink interface (anoxic/oxic boundary) in cultures inoculated with any of the eight isolated earthworm symbionts migrated upwards from \(\sim 2.0 \) cm deep 10 h post-inoculation to \(\sim 1.0 \) cm deep, where it stabilized after 6–8 days of incubation. After 15 days incubation, a thin horizon of growth was observed at the said depth; the lower clear zone presented undetectable growth, while the pink region displayed light turbidity (see Supplementary Fig. S2 in IJSEM Online). This pattern was also detected in tubes inoculated with *A. defluvii*. In tubes inoculated with the remaining Acidovorax reference species with catalase-positive type strains, the entire tube turned clear 1–2 days post-inoculation and growth was present almost exclusively at the surface of the medium.

The use of alternative electron acceptors was examined using ACM broth amended with 1 mg l\(^{-1}\) resazurin and, where appropriate, 10 mM (final concentration) of sodium fumarate, KNO\(_3\) or DMSO. Media were rendered anoxic by storage inside an anaerobic glove box for at least 8 h before dispensing into degassed Balch tubes. Before autoclaving, sealed tubes were gassed with N\(_2\)/CO\(_2\) (95/5 %). The head space was similarly replaced after autoclaving while the media temperature was maintained at 80 °C. Cooled tubes were inoculated (1:50) inside the anaerobic glove box with cultures growing on ACM broth and incubated as above. Anoxic conditions were confirmed by the absence of pink colouration. Oxid controls were treated similarly, but exposed to the atmosphere. Growth was defined as final OD\(_{600}\)>0.2. None of the novel symbiotic strains tested were capable of growth on ACM under anoxic conditions, even in the presence of the alternative electron acceptors tested. Recognized species of the genus Acidovorax, except for *A. valerianellae* (Gardan *et al.*, 2003) are capable of respiring nitrate.

Determinations of optimal temperature and NaCl concentration for growth were conducted on 2.5 ml of basal defined media with D-mannose (10 mM) and L-glutamine (5 mM) as carbon and nitrogen sources, respectively. These organic substrates have been shown previously to support good growth of the symbionts in defined media (N. Pinel, unpublished data). Cultures for temperature experiments were incubated at 4, 15, 25, 30, 33 and 37 °C; all other incubations were at 25 °C. For determination of the optimum pH, L-glutamine was replaced by an equal concentration of urea and MOPS buffer (used for pH values 6.9–7.8) was substituted by MES, HEPES and TRIS buffers for pH ranges of 5.6–6.6, 7.8–8.2, and 8.2–9.0, respectively. Overlapping pH values were included to account for buffer effects on growth rate.
The isolated symbionts grew at temperatures between 10 and 33 °C, with the optimum temperature (highest growth rates) between 25 and 28 °C. NaCl in the medium was not required for growth; the symbionts grew optimally at a sodium concentration between 50 and 60 mM. The latter values agreed with the NaCl equivalent concentration measured from the urine of the earthworm *Lumbricus terrestris* at the ampullar region of the nephridia (Ramsay, 1949). Maximum yield (maximum OD$_{600}$) increased slightly with increasing NaCl up to 90 mM, but dropped significantly at the next tested concentration (120 mM). Growth was observed in media at pH values between 6 and 8.2. The highest growth rates and maximum OD$_{600}$ values were observed at pH values between 7.5 and 8.2, depending on the isolate, but sharp optima were not apparent. Since Tris buffer appeared to inhibit the growth of the novel isolates, an upper pH limit for growth was not determined.

API CH50 galleries (bioMérieux) were used to test the growth of the isolates on a set of 49 carbohydrates over an 80 h incubation period. Media for testing growth on additional carbon and nitrogen sources contained basal defined medium amended with 10 mM of the corresponding carbon or nitrogen source from prepared stocks. The pH was adjusted to between 7.0 and 7.5 if necessary. The medium was filter-sterilized through 0.2 μm membrane filters and aliquoted (200 μl per well) into 96-well microtitre plates. Growth on each substrate was evaluated in triplicate wells on the same plate for each strain. Carbon- or nitrogen-free controls for each strain and un inoculated controls for each substrate were included in every plate. β-Hydroxybutyrate (20 mM) or ammonium chloride (10 mM) served as carbon or nitrogen sources, respectively, for the nitrogen and carbon assimilation tests; ammonium chloride was omitted when testing for growth on amino acids. Cells from mid-exponential ACM cultures were recovered by centrifugation, rinsed once with carbon- and nitrogen-free basal medium and resuspended in fresh carbon- and nitrogen-free medium to an approximate OD$_{600}$ of 1.0. A 10 μl sample of this cell suspension was used to inoculate each well. Plates were sealed with Parafilm to reduce evaporation and incubated at room temperature in the dark on an orbital shaker at 200 r.p.m. Plates of *Acidovorax* reference strains were incubated for 4 days; plates inoculated with the isolated symbionts were incubated for 10 days. Final OD$_{600}$ was measured using a microtitre plate reader. Positive growth was defined as a final OD$_{600}$>0.05 after subtraction of the corresponding value from the carbon- or nitrogen-free control. Each substrate was tested using at least two independent replicate plates. Results for the novel symbiotic strains and diagnostic carbon sources are presented in Table 2. A notable difference between the nephridial isolates and free-living species of the genus *Acidovorax* was the greater range of carbohydrates utilized by the symbionts. This may be a characteristic that reflects their symbiotic environment since carbohydrates such as mannose, fucose and galactose, are common in glycosylated surfaces such as those that may be present in the ampullar epithelium. The use of sugar residues from host surface glycans as a source of energy has been documented in other symbiotic systems (e.g. Sonnenburg *et al.*, 2005).

Starch hydrolysis was assayed on ACMP plates supplemented with 0.2 % (w/v) soluble starch. Starch hydrolysis was not observed for the isolated symbionts, *A. facilis* or *A. temperans*. Other reference strains were not tested. Gelatinase activity was assayed on ACM medium supplemented with 12 % (w/v) gelatin. Gelatinase activity was positive for *A. facilis* and *A. temperans*, but negative for all eight isolated symbionts. Results for other reference strains were obtained from the literature.

Experiments to define growth factor requirements were conducted on basal defined media (see above) without vitamins. For experiments with free-living species of the genus *Acidovorax*, β-hydroxybutyrate replaced α-mannose as the carbon source since some free-living species utilize sugars poorly. Vitamins were supplied as above or added individually at the corresponding concentrations. Amino acids were added at the following final concentrations: glutamate, arginine, aspartate, alanine, valine, threonine (0.5 mM); glutamine, lysine, methionine, asparagine, proline (0.3 mM); and histidine, serine, leucine, tryptophan (0.2 mM). Amino acids were added together, or grouped into six biosynthetic families (Fuchs, 1999) that were then considered as individual treatment units. ACM cultures in mid-exponential growth phase were rinsed with vitamin-free defined medium and transferred into 2.5 ml final volume of fresh vitamin-free defined medium for acclimation and depletion of vitamin traces. After two days, the cultures were inoculated 1:50 into the corresponding treatments.

Biotin alone was required for growth of the novel symbionts in defined media (data not shown). The biotin requirement could be partially alleviated by the addition of a 16-amino acid solution, the addition of aspartate alone, and to a lesser extent by the addition of glutamate (See Supplementary Fig. S3a in IJSEM Online). Of the free-living *Acidovorax* strains tested, *A. defluvii* and *A. temperans* displayed a vitamin dependence for growth in defined mineral medium. Biotin partially fulfilled the requirement of the former, but not that of the latter (see Supplementary Fig. S3b). Biotin participates as a cofactor in carboxylating reactions. One such reaction is the anapleurotic replenishment of oxaloacetate into the tricarboxylic acid cycle. When supplied with aspartate, an amino acid that can be converted to oxaloacetate, cells may overcome the need for biotin-dependent carboxylation.

Siderophore production was tested for the isolated symbionts and several reference strains. No siderophore production was detected for the earthworm symbionts. A description of the methods and results is available as Supplementary Material and Supplementary Fig. S4 in IJSEM Online.
Table 2. Carbon substrate assimilation and other diagnostic tests for isolates of *Verminephrobacter eiseniae* sp. nov.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalase</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gelatinase</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-Arabinitrin</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D-Fructose</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D-Fucose</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-Glucose</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D-Mannose</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-Rhamnose</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D-Ribose</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D-Xylose</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Galactose</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>DL-Lactate</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acetate</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Aconitate</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Benzoate</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Citrate</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fumarate</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Glutarate</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Maleate</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2-Oxoglutarate</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Propionate</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-Histidine</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-Isoleucine</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-Serine</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-Threonine</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-Valine</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

*Data from Willems et al., 1992.
†Also tested in this study, leading to a delayed reaction (previously reported as negative).
§Data from this study.
§Schulze et al., 1999.

The values for DNA–DNA hybridization and 16S rRNA gene sequence similarity between the isolated symbiotes and the recognized species of the genus *Acidovorax* firmly establish the novel symbiotes as representing a novel species (Stackebrandt & Goebel, 1994; Stackebrandt et al., 2002). The mean 16S rRNA gene sequence similarity between the earthworm symbiotes and either of the other two groups within the genus *Acidovorax* (92.5 ± 0.5 % and
93.3 ± 0.3 % similarity to plant pathogens and other species within the genus, respectively) fell within the range observed at a genus rank (Konstantinidis & Tiedje, 2005b) and was well below that shared among other species in the genus. Gene phylogenies support the position of the earthworm symbionts as exclusive members of a coherent lineage. A sister taxon to this group cannot be consistently ascertained from the available data. In addition to the molecular differences, our proposal for the creation of a new genus considers the distinctive physiological and ecological features of these organisms to be of taxonomic significance, as has been suggested by others (Konstantinidis & Tiedje, 2005a; Stackebrandt et al., 2002).

All of the present data indicate that these bacteria have formed a close alliance with earthworms. The molecular data available from symbionts associated with various earthworm species indicate that these bacteria form a cohesive group related to, but distinct from other species of the genus Acidovorax. Their 16S rRNA gene sequence type is rarely detected in surveys of soils or worm culture bedding (see Supplementary Material; S. K. Davidson, M. B. Lund, R. Powell, A. Schramm, D. A. Stahl & S. James, unpublished data). Further, vertical transmission is probably the sole effective transmission mode (Davidson & Stahl, 2006), suggesting that bacteria that are shed into the environment encounter a symbiotic dead end. The symbionts’ ability to utilize a larger number of sugars than other described related species, their lack of detectable catalase activity, their inability to respire nitrate, their oxygen relationships and their significantly lower growth rate compared with related species are all characteristics that set them apart from other members of the genus Acidovorax. Whole-chromosome differences in genome architecture (unpublished data) further support their evolutionary divergence from the Acidovorax group.

Considering the many distinctive ecological, molecular and physiological characteristics described here, we propose the creation of the genus Verminephrobacter gen. nov. to include the new, nephridia-associated, betaproteobacterial isolates. Since the available comparative datasets do not resolve the branching order of the symbionts relative to described members of the genus Acidovorax, possible paraphyly cannot be excluded. However, deviations from convention to accommodate biological innovation have precedent in systematics (e.g. Adl et al., 2005). The proposed naming reflects the unique ecology of the symbionts and their evolutionary radiation within different earthworm species. We anticipate that this description will provide the basis for future taxonomic revisions of the ecologically and physiologically diverse bacteria now grouped together in the genus Acidovorax.

Description of Verminephrobacter eiseniae sp. nov.

Verminephrobacter eiseniae (ei semen. gen. n. eiseniae of Eisenia, a reference to being the nephridial symbiont of the earthworm species Eisenia fetida).

The description is the same as that given for the genus Verminephrobacter. Isolated from platings of nephridial homogenates of the earthworm species Eisenia fetida onto complex media.

The type strain is EF01-2^T (=ATCC BAA-1489^T = DSM 19286^T).

Note added on revision

The description of Acidovorax caeni was published during the late revision stages of this manuscript (Heylen et al., 2008). Data from this paper were incorporated only into Table 1. A. caeni groups with A. delafieldii, A. temperans and A. defluvii. The 16S rRNA gene sequences available for A. caeni show 93 ± 0.3 % similarity to those of the eight isolates of V. eiseniae reported here. The addition of this species to the genus Acidovorax does not alter the conclusions of our work.

Acknowledgements

N. P. is funded by a Howard Hughes Medical Institute Predoctoral Fellowship and Nasa Astrobiology Institute grant NCC2-1273. This work was in part supported by grants NIH GM 20177, NSF I080345049 and NSF OCE0516520. The authors would like to thank Steve MacFarlane for his help with electron microscopy; Dr Andreas Schramm for providing the ‘nephridial isolate AT4’ nucleotide sequences for multilocus sequence analyses; Dr Ron Walcott for providing A. avenue subsp. citrulli AAC00-1, and two anonymous reviewers for invaluable comments on draft versions of this manuscript.

http://ij.sgmjournals.org

Downloaded from www.microbiologyresearch.org by IP: 54.70.40.11 On: Wed, 02 Jan 2019 05:01:42

2155
References

Adl, S. M., Simpson, A. G. B., Farmer, M. A., Andersen, R. A.,
Anderson, O. R., Bart, J. R., Bowser, S. S., Brugerolle, G., Fensome,
R. A. & other authors (2005). The new higher level classification of
eukaryotes with emphasis on the taxonomy of protists. J Eukaryot

Ballinger, M. L., Blanchette, A. R., Krause, T. L., Smyers, M. E.,
membranes help seal the cut ends of severed earthworm giant axons.

method for detecting and sizing large plasmids. Anal Biochem 226,
235–240.

Numerical analysis of total fatty acid profiles in the identification of
coryneform, nocardioform and some other bacteria. J Gen Microbiol
129, 375–394.

Cole, J. R., Chai, B., Marsh, T. L., Farris, R. J., Wang, Q., Kulam, S. A.,
Chandra, S., Mcgarrell, D. M., Schmidt, T. M. & other authors (2003).
The Ribosomal Database Project (RDP-II): previewing a new
autoaligner that allows regular updates and the new prokaryotic

bacteria of the earthworm Eisenia fetida. Appl Environ Microbiol 72,
769–775.

deoxyribonucleic acid-deoxyribonucleic acid hybridization in micro-
dilution wells as an alternative to membrane filter hybridization in
which radioisotopes are used to determine genetic relatedness among

3.2). Cladistics 5, 164–166.

Fuchs, G. (1999). Biosynthesis of Building Blocks. In Biology of the
Schlegel. Stuttgart: Thieme.

Schlegel. Stuttgart: Thieme.

Acidovorax anthurii sp. nov., a new phytopathogenic bacterium which
causes bacterial leaf-spot of anthurium. Int J Syst Evol Microbiol 50,
235–246.

valerianellae sp. nov., a novel pathogen of lamb’s lettuce [Valerianella

linked fatty acid profile changes during nutrient deprivation of Vibrio
cholerae: increases in the trans/cis ratio and proportions of

denitrifying species with genetically diverse isolates from activated

Hoshino, T., Terahara, T., Tsuneda, S., Hirata, A. & Inamori, Y.
(2005). Molecular analysis of microbial population transition
associated with the start of denitrification in a wastewater treatment

Ökol Tiere 6, 588–624 (in German).

acellular fatty acids in sulphate-reducing bacteria. Environ Microbiol 5,
1064–1070.

advance the species definition for prokaryotes. Proc Natl Acad Sci U S A
102, 2567–2572.

Konstantinidis, K. T. & Tiedje, J. M. (2005b). Towards a genome-

Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H.,
Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors
Res 32, 1363–1371.

Manefield, M., Griffiths, R. I., Leigh, M. B., Fisher, R. & Whiteley, A. S.
(2005). Functional and compositional comparison of two activated
sludge communities remediating coking effluent. Environ Microbiol 7,
715–722.

Marmur, J. (1963). A procedure for the isolation of deoxyribonucleic acid

measurement of the G+C content of deoxyribonucleic acid by high-
performance liquid chromatography. Int J Syst Evol Microbiol 39,
159–167.

complex microbial populations by denaturing gradient gel elec-
rophoresis analysis of polymerase chain reaction-amplified genes coding

Ramsay, J. A. (1949). The site of formation of hypotonic urine in the

Schramm, A., Davidson, S. K., Dodsworth, J. A., Drake, H. L., Stahl,

Schulze, R., Spring, S., Amann, R., Huber, I., Ludwig, W., Schleifer,
isolated from activated sludge and description of Acidovorax defluvii
sp. nov. Syst Appl Microbiol 22, 205–214.

x- and β-proteobacteria control the consumption and release of
amino acids on Lake Snow aggregates. Appl Environ Microbiol 67,
632–645.

symbiotes and related host tissues in nephridia of Allobophora caliginosa

Methods for General and Molecular Bacteriology, pp. 607–654. Edited

Sonnenburg, J. L., Xu, J., Leip, D. D., Chen, C.-H., Westover, B. P.,
in vivo by an intestine-adapted bacterial symbiont. Science 307,

DNA-DNA reassociation and 16S rRNA sequence analysis in the
present species definition in bacteriology. Int J Syst Evol Microbiol 44,
846–849.

Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P.,
Kämpfer, P., Maiden, M., Nesse, X., Rossello-Mora, R., Swings, J.
& other authors (2002). Report of the ad hoc committee for the re-
evaluation of the species definition in bacteriology. Int J Syst Evol
Microbiol 52, 1043–1047.

