Aquisalibacillus elongatus gen. nov., sp. nov., a moderately halophilic bacterium of the family Bacillaceae isolated from a saline lake

M. C. Márquez,1 I. J. Carrasco,1 Y. Xue,2 Y. Ma,2 D. A. Cowan,3 B. E. Jones,4 W. D. Grant5 and A. Ventosa1

1Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
2State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100080 Beijing, PR China
3Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville 7535, Cape Town, South Africa
4Genencor International BV, 2333 CN Leiden, The Netherlands
5Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK

A novel moderately halophilic, non-motile, rod-shaped bacterium was isolated from a saline lake, Lake Shangmatala, in the Inner Mongolia Autonomous Region, China. This bacterium, designated SH4sT, was strictly aerobic, catalase-positive and oxidase-negative. It grew at salinities of 3–20 \% (w/v) NaCl, with an optimum at 10 \% (w/v) NaCl. The cell-wall peptidoglycan was of the A4\textsubscript{b} type, based on L-Orn–D-Asp, and the major quinone was a menaquinone with seven isoprene units (MK-7). The major fatty acids were iso-C\textsubscript{16:0} and iso-C\textsubscript{15:0}. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, a glycolipid and four different unidentified phospholipids. The DNA G+C content was 45.9 mol\%. In a maximum-parsimony phylogenetic tree based on 16S rRNA gene sequences, strain SH4sT was found to belong to the family Bacillaceae and to be most closely related to members of the genera Filobacillus (95.9 \% sequence similarity), Piscibacillus (95.7 \%) and Tenuibacillus (95.4 \%). DNA–DNA hybridization experiments revealed 10 \% relatedness (12 \%, reciprocally) between strain SH4sT and \textit{Filobacillus milosensis} DSM 13259T, the sole species of the genus. All of these data show that strain SH4sT represents a novel genus and species in the family Bacillaceae, for which the name \textit{Aquisalibacillus elongatus} gen. nov., sp. nov. is proposed. The type strain of \textit{Aquisalibacillus elongatus} is SH4sT (=CCM 7366T = CECT 7149T = DSM 18090T).

Moderately halophilic bacteria that grow optimally in media containing 3–15 \% NaCl are widely distributed in different saline environments such as salt lakes, salterns and salty foods (Ventosa \textit{et al.}, 1998). Moderately halophilic, aerobic, Gram-positive rods are taxonomically diverse and are represented in many genera within the family \textit{Bacillaceae}. Three of these genera, namely \textit{Filobacillus} (Schlesner \textit{et al.}, 2001), \textit{Tenuibacillus} (Ren \& Zhou, 2005) and \textit{Piscibacillus} (Tanaspawat \textit{et al.}, 2007), form a coherent phylogenetic cluster within \textit{rRNA} group I of \textit{Bacillus} (Ash \textit{et al.}, 1991). To date, only a single species has been recognized for each of these genera, \textit{Filobacillus milosensis}, \textit{Tenuibacillus multivorans} and \textit{Piscibacillus salipiscarius}. During an investigation of the presence of halophilic bacteria in saline lakes in China, we isolated a moderately halophilic organism, designated strain SH4sT, that shared many physiological and biochemical characteristics with species of the genera mentioned above, but was distinctive in terms of its peptidoglycan composition and DNA G+C content. Furthermore, 16S \textit{rRNA} gene sequence analysis showed that this organism represents a novel subline within the family \textit{Bacillaceae}. In this study, morphological, cultural, physiological, biochemical, chemotaxonomic and phylogenetic characteristics of strain SH4sT were determined.
Strain SH4s\(^T\) was isolated in September 2003 from a water sample collected during an expedition to Lake Shangmatala (located at 43° 22′ N 114° 01′ E), a saline lake in Inner Mongolia, China. At the time of sampling, the temperature of the water was 21 °C, the pH was 8.5 and the salinity was 16.7 % (w/v). The isolation medium (HM medium) and the method used for isolation have been described previously (Ventosa et al., 1982). The strain was routinely cultured on the maintenance medium described by Ventosa et al. (1982). F. milosensis DSM 13259\(^T\) was obtained from the Deutsche Sammlung von Mikroorganismen und Zellkulturen (Braunschweig, Germany) and was cultivated according to its recommended procedures.

Genomic DNA from strain SH4s\(^T\) was prepared using the method described by Marmur (1961). The 16S rRNA gene was amplified by using a PCR with the forward primer 16F27 and the reverse primer 16R1488. Direct sequence determination of the PCR-amplified DNA was carried out using an automated DNA sequencer (model ABI 3130XL; Applied Biosystems). The identification of phylogenetic neighbours and the calculation of pairwise 16S rRNA gene sequence similarities were achieved using the EzTaxon server (http://www.eztaxon.org/; Chun et al., 2007). The 16S rRNA gene sequence analysis was performed with the ARB software package (Ludwig et al., 2004). The 16S rRNA gene sequence was aligned with the published sequences of closely related bacteria. The alignment was confirmed and checked against both primary and secondary structures of the 16S rRNA molecule by using the alignment tool of the ARB software package. The phylogenetic trees were constructed using three different methods: maximum likelihood (Felsenstein, 1981), maximum parsimony (Fitch, 1971) and neighbour joining (Saitou & Nei, 1987), algorithms that are integrated into the ARB software for phylogenetic inference. The 16S rRNA gene sequences used for the phylogenetic comparisons were obtained from GenBank.

An almost-complete 16S rRNA gene sequence of strain SH4s\(^T\) (1484 nt) was obtained and then used for the phylogenetic analyses. Comparative analysis of the 16S rRNA gene sequence with those of representative strains from the family Bacillaceae and from related species, performed using the maximum-parsimony algorithm, revealed that strain SH4s\(^T\) was part of a cluster that included the genera Filobacillus, Piscibacillus and Tenuibacillus. This cluster was also closely related to a cluster that included Alkalibacillus species (Fig. 1). Strain SH4s\(^T\) exhibited the highest sequence similarity with respect to F. milosensis SH 714\(^T\) (95.9 %), P. salipiscarius RBU1-1\(^T\) (95.7 %) and T. multivorans 28-1\(^T\) (95.4 %). The values obtained for sequence similarity between strain SH4s\(^T\) and the type strains of Alkalibacillus species were in the range 93.5–94.9 %. No other known bacteria shared more than 93 % gene sequence similarity with strain SH4s\(^T\). Similar topologies were obtained when other treeing methods (neighbour joining and maximum likelihood) were used (see Supplementary Figs S1 and S2, available in IJSEM Online). DNA–DNA hybridization was carried out to evaluate the genomic DNA relatedness of strain SH4s\(^T\) and F. milosensis DSM 13259\(^T\) by using the competition procedure of Johnson (1994), described in detail elsewhere (Márquez et al., 2007). The reciprocal values for DNA–DNA hybridization between SH4s\(^T\) and F. milosensis DSM 13259\(^T\) were 10 and 12 %, respectively.

To characterize strain SH4s\(^T\) phenotypically, standard phenotypic tests were performed. Vegetative cells of strain SH4s\(^T\) were Gram-stained using the method of Dussault (1955) and the Gram type was also determined using the KOH test (Powers, 1995). Cell morphology and motility were examined by using phase-contrast microscopy (BX41 microscope; Olympus) on an exponentially growing liquid culture. The morphology, size and pigmentation of colonies were observed under optimal growth conditions on agar medium after 2 days incubation at 37 °C. Growth at different concentrations of salts was determined on the maintenance medium, to which different salt concentrations had been added (0, 0.5, 1, 3, 5, 7.5, 10, 15, 20, 25 and 30 %, w/v). The pH range for growth was determined on the maintenance medium at pH 4.0–11.0, using the appropriate biological buffers [Na\(_2\)HPO\(_4\)/NaH\(_2\)PO\(_4\) (below pH 8.0), Na\(_2\)CO\(_3\)/NaHCO\(_3\) (pH 8.0–10.0) and Na\(_2\)HPO\(_4\)/NaOH (pH 11.0)], as described previously (Gomori, 1953). The pH was readjusted after sterilization and then growth was scored as the optical density at 600 nm. Growth at different temperatures (6, 10, 15, 20, 25, 30, 37, 40, 45, 50, 0.02 substitutions per nucleotide position.)
Table 1. Characteristics that serve to distinguish strain SH4sT from its phylogenetic relatives

<table>
<thead>
<tr>
<th>Taxa: 1, strain SH4sT (data from this study); 2, F. milosensis (Schlesner et al., 2001; Tanasupawat et al., 2007); 3, P. salipiscarius (Tanasupawat et al., 2007); 4, T. multivorans (Ren & Zhou, 2005).</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Gram reaction</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Spore formation</td>
<td>Not observed</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Motility</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>NaCl concentration for growth (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>3–20</td>
<td>2–23</td>
<td>2–30</td>
<td>1–20</td>
</tr>
<tr>
<td>Optimum</td>
<td>10</td>
<td>8–14</td>
<td>10–20</td>
<td>5–8</td>
</tr>
<tr>
<td>Temperature range (°C)</td>
<td>6–55</td>
<td>ND–42</td>
<td>15–48</td>
<td>21–42</td>
</tr>
<tr>
<td>Oxidase activity</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Hydrolysis of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aesculin</td>
<td>–</td>
<td>–</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>Casein</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gelatin</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Starch</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>45.9</td>
<td>35.0</td>
<td>36.7</td>
<td>36.5–37.0</td>
</tr>
<tr>
<td></td>
<td>iso-C16:0 (26%), iso-C15:0 (24%)</td>
<td>antisei-C15:0 (41.5%), iso-C15:0 (23.2%)</td>
<td>antisei-C15:0 (35.3%), iso-C15:0 (30.8%)</td>
<td>antisei-C15:0 (64.7%), iso-C15:0 (12.7%)</td>
</tr>
<tr>
<td>Distinctive major fatty acids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

55 and 60 °C) was determined on the maintenance medium. Anaerobic growth was determined on the maintenance medium, using an anaerobe jar and H₂ and CO₂ GasPaks (BBL) for generating anaerobic conditions. Catalase activity was determined by adding 3 % (v/v) H₂O₂ to culture plates. The oxidase reaction was performed on filter paper moistened with a 1 % (w/v) aqueous solution of N₅N₂N₂N₂⁻tetramethyl-p-phenylenediamine. Sporulation was tested on solid maintenance medium and on this medium supplemented with 5 mg MnSO₄ l⁻¹ (Merck). Plates were inoculated with 0.3 ml aliquots of an overnight liquid culture and then incubated at 37 °C for up to 1 month to determine whether endospores were present (Claus & Berkeley, 1986; Tiago et al., 2006). The heat resistance of the cells was determined using cultures on the maintenance medium. Aliquots (5 ml) of the cultures were collected at (approximately) the exponential (4 h), late-exponential (10 h), stationary (20 h) and late-stationary (48 h, 72 h and 10 days) phases and were heated at 80 °C for 10 min. Aliquots (0.3 ml) of the heated cultures were inoculated onto solid maintenance medium and incubated for 48 h at 37 °C. In addition, the viability of the cells at each growth stage was checked by subculturing them on the same medium before heating (Tiago et al., 2006). The utilization of various substrates as sole carbon and energy sources was determined as described previously (Ventosa et al., 1982). Carbohydrates were added at 0.2 % (w/v), organic acids at 0.1 % (w/v) and alcohols at 0.1 % (w/v). Other tests shown in Table 1 or included in the genus or species descriptions were carried out using methods described previously (Ventosa et al., 1982; Quesada et al., 1984; Garcia et al., 1987). Unless indicated otherwise, the tests were carried out on the maintenance medium and incubated at 37 °C in sealed containers.

Strain SH4sT was moderately halophilic, growing in the maintenance medium supplemented with 3–20 % (w/v) NaCl and optimally in media containing 10 % (w/v) NaCl. No growth was observed in the absence of NaCl. Cells of strain SH4sT were non-motile, whereas those of F. milosensis, P. salipiscarius and T. multivorans have been described as motile. Strain SH4sT was oxidase-negative, like F. milosensis but in contrast to P. salipiscarius and T. multivorans. The Gram reaction of very young cultures (9 h) and older ones (up to 7 days) was negative. However, the KOH reaction was indicative of a Gram-positive cell-wall type (Powers, 1995). Similar observations have been reported (and confirmed by our tests) for the closest phylogenetic relative of the isolate, F. milosensis (Schlesner et al., 2001), and for A. haloalkaliphilus (Fritze, 1996). Despite all of our attempts to observe endospores in cells of strain SH4sT, they were not detected; furthermore, the cells did not exhibit heat resistance when subjected to heating at 80 °C for 10 min, which might indicate that endospores were not formed under the conditions tested. The inability to produce endospores has been described for some Bacillus species, such as Bacillus foraminis (Tiago et al., 2006) and Bacillus thermoamlylovorans (Combet-Blanc et al., 1995). In the case of A. haloalkaliphilus, sporulation was enhanced at NaCl concentrations close to 5 % and was delayed at higher concentrations (Fritze, 1996). Results for
other phenotypic features are included in the genus and species descriptions and in Table 1.

The G+C content of the genomic DNA was determined from the midpoint value \(T_m \) of the thermal denaturation profile (Marmur & Doty, 1962) using the equation of Owen & Hill (1979). The DNA G+C content of strain SH4sT was 45.9 mol\%, which is much higher than values described for \(F. \) milosensis (35.0 mol\%) (Schlesner \textit{et al.}, 2001), \(P. \) salipiscarius (36.7 mol\%) (Tanasupawat \textit{et al.}, 2007) and \(T. \) multivorans (36.5–37.0 mol\%) (Ren & Zhou, 2005).

Analysis of the cell-wall peptidoglycan, quinones and polar lipids of strain SH4sT was carried out by the Identification Service of the Deutsche Sammlung von Mikroorganismen und Zellkulturen. Cell biomass for these analyses was obtained from cultivation on the maintenance medium at 37 °C. Strain SH4sT had peptidoglycan type A4\(\beta \): L-Orn was the diamino acid at position 3 of the peptidoglycan and the dicarboxylic amino acid present in the cross-linkage was D-Asp. The peptidoglycan composition of the novel strain is clearly different from that described for members of phylogenetically related genera. \(F. \) milosensis also has peptidoglycan type A4\(\beta \), but with D-Glu instead D-Asp in the cross-linkage (Schlesner \textit{et al.}, 2001); \(P. \) salipiscarius and \(T. \) multivorans have a direct cross-linkage between position 3 and 4 and \textit{meso}-diaminopimelic acid as the diamino acid. The isoprenoid quinones detected in strain SH4sT were MK-7 (91%) and MK-8 (9%). With respect to the polar lipid composition, strain SH4sT contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine (traces), a glycolipid and four different phospholipids of unknown structure (Supplementary Fig. S3).

Fatty acid analysis was performed using the MIDI system (Microbial Identification System). Cells were cultured on the maintenance medium at 37 °C for 24 h. This analysis was carried out by the Identification, Characterization and Molecular Typing Service of the BCCM/LMG Bacteria Collection (Ghent University, Belgium). The major fatty acids of strain SH4sT were iso-C\textsubscript{16:0} (26.1%) and iso-C\textsubscript{15:0} (24.2%); the complete profile of the cellular fatty acids is given in detail in the species description. This cellular fatty acid profile is clearly different from that described for phylogenetically related genera. In \(F. \) milosensis, anteiso-C\textsubscript{15:0} was most abundant, whereas, in \(P. \) salipiscarius and \(T. \) multivorans, iso-C\textsubscript{15:0} was the predominant fatty acid (Schlesner \textit{et al.}, 2001; Tanasupawat \textit{et al.}, 2007; Ren & Zhou, 2005) (Table 1).

The data obtained show that strain SH4sT belongs to the family \textit{Bacillaceae}, forming part of a cluster comprising the monospecific genera \textit{Filibacillus}, \textit{Piscibacillus} and \textit{Tenuibacillus}. Strain SH4sT shares some phenotypic features with these three genera. However, in contrast to \(P. \) salipiscarius and \(T. \) multivorans, strain SH4sT is negative for Gram-staining and oxidase activity. Furthermore, the isolate clearly differs from members of the three genera in being non-motile, in being able to reduce nitrate to nitrite and in terms of its DNA G+C content, fatty acid profile and cell-wall peptidoglycan composition. Additional differences between strain SH4sT and its phylogenetically close relatives are presented in Table 1. The values for 16S rRNA gene sequence similarity between strain SH4sT and the type strains of the three aforementioned genera ranged from 95.4 to 95.9%. These values are lower than those found between the genera \textit{Tenuibacillus} and \textit{Piscibacillus} and the most closely related genus, \textit{Filibacillus} (97 and 96.9% 16S rRNA gene sequence similarity, respectively). Therefore, on the basis of the data presented, it is proposed that strain SH4sT represents a novel genus and species, for which the name \textit{Aquisalibacillus elongatus} gen. nov., sp. nov. is proposed.

Description of \textit{Aquisalibacillus} gen. nov.

\textit{Aquisalibacillus} (A.qui.sa.li.ba.cil’lus. L. n. \textit{aqua} water; L. n. \textit{sal}, salis salt; L. n. \textit{bacillus} rod; N.L. masc. n. \textit{Aquisalibacillus} a rod living in salt water).

Cells are Gram-negative, non-motile rods. Endospores are not observed. Moderately halophilic and strictly aerobic. Catalase-positive and oxidase-negative. Nitrate and nitrite are reduced. The KOH test is negative. The cell wall contains peptidoglycan of the A4\(\beta \) type, with L-Orn as the diamino acid and D-Asp as the dicarboxylic amino acid present in the cross-linkage. The major cellular fatty acids are iso-C\textsubscript{16:0} and iso-C\textsubscript{15:0}. The predominant menaquinone is MK-7. The genus belongs to the family \textit{Bacillaceae} and is related phylogenetically to the genera \textit{Filibacillus} and \textit{Piscibacillus}. The type species is \textit{Aquisalibacillus elongatus}.

Description of \textit{Aquisalibacillus elongatus} sp. nov.

\textit{Aquisalibacillus elongatus} (e.lon.ga’tus. L. masc. part. adj. \textit{elongatus} elongated, stretched out).

Exhibits the following characteristics in addition to those described for the genus. Cells are 0.5 μm wide and 2.0–10.0 μm long. Colonies are circular and entire, 1 mm in diameter and cream-pigmented on the maintenance medium after 2 days cultivation. Grows with a wide range (3–20%, w/v) of NaCl concentrations, with optimal growth at 10% (w/v) NaCl. No growth occurs in the absence of NaCl. Grows at 20–55 °C (optimally at 37 °C) and at pH 7.0–10.0 (optimally at pH 7.5). Aesculin, casein, gelatin, Tween 80 and starch are not hydrolysed. Indole, Voges–Proskauer, phenylalanine deaminase, H\textsubscript{2}S production and phosphatase tests are negative. Acids are not produced from arabinose, fructose, D-glucose, glycerol, lactose, malto, D-mannitol, sucrose or trehalose. The following compounds are utilized as sole carbon and energy sources: acetate, butanol, ethanol, L-fucose, fumarate, methanol, raffinose, D-sorbitol and valerate. The following compounds are not utilized as sole carbon and energy sources: D-arabinose, benzoate, cellubiose, citrate,
formate, galactose, maltose, D-mannose, melezitose, melibiose, propanol, propionate, succinate, trehalose and D-xyllose. The following compounds are utilized as sole carbon, nitrogen and energy sources: L-alanine, D,L-arginine, cysteine, L-ornithine and L-serine. The following compounds are not utilized as sole carbon, nitrogen and energy sources: aspartic acid, glutamic acid, D,L-lysine, methionine, phenylalanine, L-threonine and L-tryptophan. Menaquinones present are MK-7 (91%) and MK-8 (9%). The polar lipids are diphostatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, a glycolipid and four different unidentified phospholipids. The fatty acids comprise iso-C₁₆ : 0 (26.1%), iso-C₁₅ : 0 (24.2%), iso-C₁₆ : 1ω7c (14.0%), anteiso-C₁₅ : 0 (10.0%), iso-C₁₄ : 0 (8.9%), iso-C₁₇ : 1ω10c (6.1%), anteiso-C₁₇ : 0 (4.0%), iso-C₁₇ : 1ω9c (2.3%), C₁₆ : 1ω11c (1.6%), C₁₆ : 0 (1.1%), iso- C₁₈ : 0 (0.9%), C₁₇ : 0 (0.6%), C₁₈ : 0 (0.5%) and C₁₄ : 0 (0.2%). The DNA G + C content is 45.9 mol% (Tₘ).

The type strain, SH4sT (=CCM 7366T = CECT 7149T = DSM 18090T), was isolated from water from a saline lake (Lake Shangmata) in Inner Mongolia, China.

Acknowledgements

This study was supported by grants from the Quality of Life and Management of Living Resources Programme of the European Commission (Project 'Multigene Access Technology for Industrial Catalysts', QLK3-CT-2002-01972), the Spanish Ministerio de Educación y Ciencia (BI02006-06927) and the Junta de Andalucía (P06-CVI-01829).

References

