Archaeoglobus infectus sp. nov., a novel thermophilic, chemolithoheterotrophic archaeon isolated from a deep-sea rock collected at Suiyo Seamount, Izu-Bonin Arc, western Pacific Ocean

Koji Mori,1,2 Akihiko Maruyama,2 Tetsuro Urabe,3 Ken-ichiro Suzuki1 and Satoshi Hanada2

1NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
2Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
3Department of Earth and Planetary Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

A novel thermophilic, strictly anaerobic archaeon, designated strain Arc51T, was isolated from a rock sample collected from a deep-sea hydrothermal field in Suiyo Seamount, Izu-Bonin Arc, western Pacific Ocean. Cells of the isolate were irregular cocci with single flagella and exhibited blue–green fluorescence at 436 nm. The optimum temperature, pH and NaCl concentration for growth were 70 °C, pH 6.5 and 3 % (w/v), respectively. Strain Arc51T could grow on thiosulfate or sulfite as an electron acceptor in the presence of hydrogen. This strain required acetate as a carbon source for its growth, suggesting that the reductive acetyl CoA pathway for CO2 fixation was incomplete. In addition, coenzyme M (2-mercaptoethanesulfonic acid), which is a known methyl carrier in methanogenesis, was also a requirement for growth of the strain. Analysis of the 16S rRNA gene sequence revealed that the isolate was similar to members of the genus Archaeoglobus, with sequence similarities of 93.6–97.2 %; the closest relative was Archaeoglobus veneficus. Phylogenetic analyses of the dsrAB and apsA genes, encoding the alpha and beta subunits of dissimilatory sulfite reductase and the alpha subunit of adenosine-5′-phosphosulfate reductase, respectively, produced results similar to those inferred from comparisons based on the 16S rRNA gene sequence. On the basis of phenotypic and phylogenetic data, strain Arc51T represents a novel species of the genus Archaeoglobus, for which the name Archaeoglobus infectus sp. nov. is proposed. The type strain is Arc51T (=NBRC 100649T =DSM 18877T).

Energy acquisition from dissimilatory sulfate reduction is widespread among prokaryotes. The ability to reduce sulfate is found not only in members of the domain Bacteria, but also in the domain Archaea. Archaeoglobus fulgidus, which belongs to the phylum Euryarchaeota, was the first sulfate-reducing archaeon isolated from the hot sediment of a hydrothermal vent system in Italy (Stetter et al., 1987). Following this discovery, Caldivirga maquilingensis, a hyperthermophilic and acidophilic sulfate reducer belonging to the phylum Crenarchaeota, was isolated from a hot spring in the Philippines (Itoh et al., 1999).

In the phylum Euryarchaeota, only three sulfate (or sulfite)-reducing species in the genus Archaeoglobus have validly published names thus far: A. fulgidus (Stetter et al., 1987; Stetter, 1988), Archaeoglobus profundus (Burggraf et al., 1990) and Archaeoglobus veneficus (Huber et al., 1997). All of these species were isolated from a hydrothermal vent system. In addition, there is a species that currently lacks a validly published name, namely ’Archaeoglobus lithotrophicus’ (Stetter et al., 1993); this species was investigated with regard to its autotrophic CO2 fixation (Vorholt et al., 1995). Whilst A. fulgidus, A. profundus and ’A. lithotrophicus’ are true sulfate reducers that can utilize sulfate as an electron acceptor, A. veneficus cannot reduce sulfate, but utilizes thiosulfate or sulfite as an electron sink. The related genera Ferroglobus (Hafenbradl et al., 1996) and Geoglobus (Kashefi et al., 2002), which show no ability to reduce...
sulfate and/or sulfite, also belong to the family *Archaeoglobaceae*, along with the genus *Archaeoglobus*. *Ferroglobus placidus* grows anaerobically by using nitrate as an electron acceptor in the presence of Fe(II) as an electron donor. It is also capable of utilizing thiosulfate and Fe(III) as electron acceptors (Hafenbradl et al., 1996; Tor et al., 2001). *Geoglobus ahangari* can grow in the presence of Fe(III) as the sole electron acceptor and does not utilize any other acceptors, such as sulfur compounds (Kashefi et al., 2002). All species belonging to the family *Archaeoglobaceae* have been isolated from hydrothermal vent systems and demonstrate anaerobic growth involving the use of sulfur compounds and/or Fe(III) as electron sinks.

Recently, we isolated a novel thermophilic, strictly anaerobic archaeon, showing sulfite/thiosulfate reduction, from a hydrothermal rock sample collected from Suiyo Seamount. Data from phylogenetic and phenotypic analyses described in this paper demonstrated that this isolate warrants classification as a novel species in the genus *Archaeoglobus*.

Suiyo Seamount in Izu-Bonin Arc, western Pacific Ocean (28°34′ N 140°29′ E; depth, 1380 m) is an active submarine volcano with many active hydrothermal vents in its caldera (Glasy et al., 2000). A black smoker chimney (at approx. 300 °C) is observed frequently and large amounts of reduced chemicals have been detected in the hydrothermal fluids discharged from the vents (Tsunogai et al., 1994). Recently, an archaean community in the site was investigated by using 16S rRNA gene-cloning analyses: the data suggested that a novel *Archaeoglobus* species was an inhabitant (Hara et al., 2005; Higashi et al., 2004). A thermophilic sulfite/thiosulfate-reducing archaeon, designated strain *Arc51T*, was isolated from a rock sample collected on 23 July 2002 by using a benthic multi-coring system (Metal Mining Agency of Japan, Tokyo, Japan), which is a tethered marine rock drill used to obtain cores from the seabed.

A core sample was collected from near the chimneys. Some rocks at various depths (to a maximum of 7035 mm from the seafloor) were selected for enrichment, crushed immediately in a vice in an anaerobic chamber (COY Laboratory Products) and resuspended in a basal medium. The basal medium (pH 6.5 at room temperature), kept under an N2/CO2 atmosphere (80:20, v/v; 150 kPa) using vials sealed with butyl-rubber stoppers and aluminium caps, and the medium used was a basal medium supplemented with Na2SO4 (1.42 g l⁻¹), Na2S2O3.5H2O (2.48 g l⁻¹) and sodium acetate (0.82 g l⁻¹) under an H2/CO2 atmosphere (80:20, v/v; 150 kPa). After a 1 week incubation at 75 °C, microbial growth was observed in a culture that had been inoculated with the surface layer of the core sample. The enrichment culture was transferred to a fresh enrichment medium (inoculum: 10%, v/v) and this procedure was repeated several times. After 2 weeks cultivation at 75 °C on the isolation medium solidified with 0.6% gellan gum, a single black colony had formed. After a second purification step with the same solid medium, strain *Arc51T* was isolated successfully from the enrichment sample. However, the isolate showed very slow growth and, after a while, the growth came to a complete standstill. After some trial and error, it was finally found that supplementation with coenzyme M, a methyl carrier essential for methanogenesis, restored growth. Subsequently, cultivations were performed using medium supplemented with coenzyme M at 0.14 g l⁻¹ (final concentration).

Morphologically, cells of strain *Arc51T* were irregular coccii (approx. 0.5–1.0 μm in diameter) with single flagella (Fig. 1). Microscopically, strain *Arc51T* showed blue–green

Fig. 1. Phase-contrast (a) and transmission electron (b) micrographs of cells of strain *Arc51T*. Cells were negatively stained with 1% phosphotungstic acid (pH 7.0) and observed by using an electron microscope (model H-7600; Hitachi) operating at 100 kV. Bars: 4 μm (a); 0.5 μm (b).
fluorescence at 436 nm; this suggested that it possessed a coenzyme F420-like compound. The isolate was a strictly anaerobic archaeon and could grow with thiosulfate under an H2/CO2 atmosphere. It required acetate as a carbon source, and growth was not observed after 7 days incubation with the addition of 1% elemental sulfur. Analysis of the gas phase of the cultures by GC performed using a thermal-conductivity detector and a Molecular Sieve 60/80 column (both from Shimadzu) revealed that strain Arc51T, like A. fulgidus and A. veneficus, produced small amounts of methane (approx. 85 nmol from a 20 ml culture).

After the extraction and purification of genomic DNA (Mori et al., 2000), the 16S rRNA gene was amplified with primers 25e (forward) and 1525 (reverse) (Achenbach & Woese, 1995). The PCR product was sequenced by using the PCR primers as well as the following: Ar700R, 5’-ACTACCGGTATCTAATC-3’; Ar1000F, 5’-AGTCA-GGCAACGGCGAGA-3’; Ar1000R, 5’-TCTCGTCTCGTTGCTGACT-3’ (Hattori et al., 2000). An almost-complete 16S rRNA gene sequence was determined for strain Arc51T (GenBank accession no. AB274307). After alignment with the ARB program (Ludwig et al., 2004), a phylogenetic tree (Fig. 2a) was constructed by using the neighbour-joining method with the CLUSTAL_X program (Saitou & Nei, 1987; Thompson et al., 1997). Strain Arc51T belonged to the family Archaeoglobaceae, and sequence similarities between the isolate and A. veneficus, A. fulgidus, A. profundus, G. ahangari and F. placidus were 97.2, 95.7, 93.6, 95.4 and 94.5%, respectively.

In addition to the 16S rRNA gene sequence, the dsrAB (encoding the alpha and beta subunits of dissimilatory sulfite reductase) and apsA (encoding the alpha subunit of adenosine-5’-phosphosulfate reductase) gene sequences of strain Arc51T were determined. The dsrAB and apsA genes were amplified by using primers DSR1F and DSR4R (Wagner et al., 1998) and primers APS7-F and APS8-R (Friedrich, 2002), respectively. Amino acid sequences were deduced from the gene sequences determined for dsrAB (GenBank accession no. AB274309, 1870 bp) and apsA (GenBank accession no. AB274310, 889 bp) of strain Arc51T, and neighbour-joining trees were constructed with the CLUSTAL_X program. The dsrAB gene sequence of A. veneficus DSM 11195T was also determined by the same method (GenBank accession no. AB274311, 1870 bp) and used for phylogenetic analysis. The phylogenetic trees for DsrAB (Fig. 2b) and ApsA (Fig. 2c) were topologically similar to that for the 16S rRNA gene, and the closest relative in each tree was A. veneficus, with similarities of 78.3 and 92.8% for the DsrAB and ApsA sequences, respectively.

A test for determining the electron acceptors utilized was performed in the presence of acetate (10 mM) under an...

Fig. 2. Neighbour-joining phylogenetic trees based on 16S rRNA gene (a), DsrAB deduced amino acid (b) and ApsA deduced amino acid (c) sequences of strain Arc51T and relatives. Numbers of alignment positions used for the analyses of the 16S rRNA gene, DsrAB and ApsA were 1156, 546 and 265, respectively. Bootstrap probabilities are indicated at branching points. GenBank accession numbers for reference sequences are shown in parentheses. Bars, 0.03 substitutions per compared nucleic acid (a); 0.03 substitutions per compared amino acid (b, c).
H₂/CO₂ atmosphere. Growth was examined by using microscopic observation and changes in OD₆₆₀ recorded with a spectrophotometer (model U-2800; Hitachi). The concentrations of sulfate, thiosulfate and nitrate were determined by using HPLC apparatus (model 2695; Waters) equipped with a Waters IC-Pac anion column and a Waters (model 432) conductivity detector (column temperature, 35 °C; eluant, sodium gluconate at 0.32 g 1⁻¹, boric acid at 0.36 g 1⁻¹, sodium tetraborate decahydrate at 0.5 g 1⁻¹, butanol at 20 ml 1⁻¹ and acetonitrile at 120 ml 1⁻¹; flow rate, 1.3 ml min⁻¹). Strain Arc5₁ᵀ could utilize thiosulfate (10 mM) and sulfate (2.5 mM) as electron acceptors, but the following acceptors did not support growth: sulfate (10 mM), elemental sulfur (10 g 1⁻¹), nitrate (10 mM), nitrite (2.5 and 5.0 mM), oxygen (5 %), DMDS (2.5 and 5.0 mM), Fe(III) citrate (2.5 and 5.0 mM) and Fe(III) chloride (2.5 and 5.0 mM). Huber et al. (1997) reported that A. veneficus could not utilize nitrate or nitrite as electron acceptors. Our study revealed that, like A. veneficus, A. fulgidus NBRC 100126ᵀ (=VC-16ᵀ) and A. profundus NBRC 100127ᵀ (=AV18ᵀ) could not utilize these compounds.

In the presence of thiosulfate (20 mM) and acetate (10 mM), strain Arc5₁ᵀ grew on hydrogen as an electron donor. Under an N₂/CO₂ atmosphere, neither an increase in cell density nor a decrease in thiosulfate (20 mM) was observed by culturing the strain in a medium supplemented with the following substrates: acetate (20 and 40 mM), glucose (10 mM), butyrate (20 mM), citrate (20 mM), formate (20 and 40 mM), fumarate (20 mM), glutamate (20 mM), lactate (20 mM), malate (20 mM), propionate (20 mM), pyruvate (20 mM), succinate (20 mM), l-arginine (20 mM), l-asparagine (20 mM), l-cysteine (20 mM), l-histidine (20 mM), l-leucine (20 mM), l-methionine (20 mM), ethanol (20 mM), 2-propanol (20 mM), methanol (20 mM), Bacto peptone (Difco) (0.5 g 1⁻¹), Bacto yeast extract (Difco) (0.5 g 1⁻¹) and Casamino acids (0.5 g 1⁻¹). The results indicated clearly that strain Arc5₁ᵀ was an obligate chemolithotroph and incapable of heterotrophic fermentation. Furthermore, in the presence of nitrate as an electron acceptor, neither growth nor nitrate reduction (measured by HPLC) was observed with 20 mM FeS alone or FeS and H₂ (as H₂/CO₂) as electron donor(s). Although F. placidis can grow under the above-mentioned conditions (Hafenbradl et al., 1996), it was ascertained in our study that no other Archaeoglobus species could grow under identical conditions.

The temperature, pH (adjusted by adding Na₂CO₃ at room temperature) and NaCl concentration ranges for growth were determined on the basis of increases in OD₆₆₀ and reductions in thiosulfate following a 2 week incubation using basal medium supplemented with thiosulfate (20 mM) and sodium acetate (10 mM) under an H₂/CO₂ atmosphere. Strain Arc5₁ᵀ could grow between 60 and 75 °C, the optimum temperature being 70 °C. It was very sensitive to pH changes, and growth occurred only at pH 6.5–7.0 (optimum, pH 6.5). The NaCl concentrations for growth ranged from 1 to 4 % (w/v), with an optimum of 3 %. Strain Arc5₁ᵀ had a doubling time of 23.3 h under optimum growth conditions [70 °C, pH 6.5 and at 3 % (w/v) NaCl] and the final concentration of the cells measured after staining with DAPI was approximately 8 × 10⁹ cells ml⁻¹.

The G + C content of genomic DNA of strain Arc5₁ᵀ was analysed by using HPLC with a reversed-phase column (Mesbah et al., 1989); the value obtained was 45.9 mol%.

The values for reference species A. fulgidus NBRC 100126ᵀ (=VC-16ᵀ), A. profundus NBRC 100127ᵀ (=AV18ᵀ) and A. veneficus DSM 11195ᵀ (=SNP6ᵀ) were also determined in this study by using the same method, as these values were previously determined by the Tm method; the redetermined values were 47.6, 43.7 and 46.2 mol%, respectively. These values were slightly higher than those determined previously (Burggraf et al., 1990; Huber et al., 1997; Stetter et al., 1987).

The differential characteristics of strain Arc5₁ᵀ and strains of related species are summarized in Table 1. Strain Arc5₁ᵀ could grow by utilizing sulfur compounds for respiration; this feature is typical of members of the genus Archaeoglobus. All species of the family Archaeoglobaceae, except A. profundus, were able to grow chemolithoautotrophically. However, strain Arc5₁ᵀ required acetate as a carbon source for growth; A. profundus also exhibited this trait, requiring organic compounds such as acetate for its growth (Burggraf et al., 1990; Vorholt et al., 1995). However, the electron acceptors utilized by strain Arc5₁ᵀ were clearly different from those utilized by A. profundus. Although almost all Archaeoglobus species reduce sulfate, our isolate was unable to use sulfate as an electron acceptor; however, it was able to use thiosulfate or sulfite. The pattern was similar to that of A. veneficus (Huber et al., 1997). The optimal growth temperature for strain Arc5₁ᵀ was obviously lower than those of other species of the family Archaeoglobaceae, whilst other species in this family show optimal growth at, or above, 80 °C, strain Arc5₁ᵀ was unable to grow at 80 °C. The phylogenetic tree based on 16S rRNA gene sequences revealed that strain Arc5₁ᵀ belonged to the family Archaeoglobaceae (sequence similarities, 93.6–97.2 %), with A. veneficus as the closest relative (sequence similarity, 97.2 %). Similar trends were also found for phylogenetic analyses based on the DsrAB and ApsA amino acid sequences (Fig. 2b, c). Although all of the molecular phylogenetic analyses indicated that strain Arc5₁ᵀ was related closely to A. veneficus, there were significant differences between their sequences. The results from a DNA–DNA hybridization study (Tamaki et al., 2003) indicated that the degree of DNA relatedness between strain Arc5₁ᵀ and A. veneficus was < 20 % (Table 1), suggesting strongly that they should be considered as different species. Strain Arc5₁ᵀ was distinguished easily from A. veneficus by the following two phenotypic features. Firstly, although A. veneficus could grow chemolithoautotrophically in the

http://ijs.sgmjournals.org
Table 1. Characteristics of strain Arc51T and related strains in the family Archaeoglobaceae

Strains: 1, Arc51T; 2, A. fulgidus VC-16T; 3, A. profundus AV18T; 4, A. veneficus SNP6T; 5, G. ahangari 234T; 6, F. placidus AEDII12DOT. Data for related archaea were from Burggraf et al. (1990), Hafenbradl et al. (1996), Huber et al. (1997), Kashefi et al. (2002), Stetter et al. (1987), Stetter (1988), Tor et al. (2001), Vargas et al. (1998) and this study. +, Positive; −, negative; ND, not determined.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat</td>
<td>Deep-sea hydrothermal system, Suiyo Seamount</td>
<td>Hot sediment of hydrothermal system, Vulcano, Italy</td>
<td>Deep-sea hydrothermal system, Guaymas, Mexico</td>
<td>Deep-sea wall of black smoker, Mid-Atlantic Ridge</td>
<td>Deep-sea hydrothermal system, Guaymas, Mexico</td>
<td>Sand/water of shallow beach, Vulcano, Italy</td>
</tr>
<tr>
<td>(S) sensitivity</td>
<td>Inhibitory</td>
<td>Inhibitory</td>
<td>Inhibitory</td>
<td>Inhibitory</td>
<td>ND</td>
<td>Inhibitory</td>
</tr>
<tr>
<td>(\text{CH}_4) formation</td>
<td>++</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Fluorescence under UV</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Chemolithoautotrophic growth</td>
<td>−</td>
<td>(\text{H}_2/\text{CO}_2 + \text{S}_2\text{O}_32−)</td>
<td>−</td>
<td>(\text{H}_2/\text{CO}_2 + \text{S}_2\text{O}_32−); (\text{H}_2/\text{CO}_2 + \text{Fe}^{3+})</td>
<td>(\text{H}_2/\text{CO}_2 + \text{S}_2\text{O}_32−); (\text{H}_2/\text{CO}_2 + \text{NO}_3^-); (\text{FeS/CO}_2 + \text{NO}_3^-)</td>
<td></td>
</tr>
<tr>
<td>Growth requirements</td>
<td>Acetate, coenzyme M</td>
<td>−</td>
<td>Organic carbon sources</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Optimum growth conditions:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>70</td>
<td>83</td>
<td>82</td>
<td>80</td>
<td>88</td>
<td>85</td>
</tr>
<tr>
<td>pH</td>
<td>6.5</td>
<td>(5.5–7.5)*</td>
<td>6.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Use of electron acceptors:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{SO}_4^{2−})</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(\text{SO}_3^{2−})</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(\text{S}_2\text{O}_3^{2−})</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>(\text{S}^{\text{II}})</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>ND</td>
<td>−</td>
</tr>
<tr>
<td>(\text{NO}_3^-)</td>
<td>−</td>
<td>−†</td>
<td>−†</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>(\text{NO}_2^-)</td>
<td>−</td>
<td>−†</td>
<td>−†</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(\text{Fe}^{3+})</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>DNA G+C content (HPLC; mol%)</td>
<td>45.9</td>
<td>47.6†</td>
<td>43.7†</td>
<td>46.2†</td>
<td>58.7</td>
<td>43</td>
</tr>
<tr>
<td>DNA–DNA hybridization (%) with:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strain Arc51T</td>
<td>100</td>
<td>4</td>
<td>1</td>
<td>16</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>A. veneficus SNP6T</td>
<td>17</td>
<td>5</td>
<td>4</td>
<td>100</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

*Indicated as the range.
\†Data from this study.
An interesting feature of strain Arc51T is that it requires the organic cofactor coenzyme M for growth. Coenzyme M is an essential terminal methyl carrier in methanogenesis (Graham & White, 2002; Taylor & Wolfe, 1974; Thauer, 1998) and promotes growth in some methanogenic members of the Archaea (Miller et al., 1986; Sprenger et al., 2000; Taylor et al., 1974). Coenzyme M has a role not only in the methanogenesis pathway in the Euryarchaeota, but also in the utilization of short-chain alkenes, as demonstrated in recent studies on propylene-, ethylene- and vinyl chloride-utilizing bacteria (Allen et al., 1999; Boyd et al., 2006; Coleman & Spain, 2003a, b; Danko et al., 2006; Mattes et al., 2005). Emission of trace amounts of methane is generally observed in the growing cultures of almost all Archaeoglobus species, but they are unable to grow by methanogenesis. Indeed, many enzymes involved in methanogenesis have been found in A. fulgidus (Klenk et al., 1997), A. profundus (Vorholt et al., 1995), ‘A. lithotrophicus’ (Vorholt et al., 1995) and even F. placidus (Vorholt et al., 1997), although whether the trace methanogenesis is fundamentally connected to their growth is open to investigation. Strain Arc51T has lost its ability to synthesize coenzyme M and requires it for growth, producing trace amounts of methane in the process. Assuming that the cofactor is necessary for methanogenesis in strain Arc51T, the methane production is of some relevance to its growth, as mainly supported by reduction of sulfur compounds. Whilst this suggests the need for further study, the significant relationship between methanogenesis and growth in this strain would be not limited to the isolate, but would be a feature of all Archaeoglobus species.

Description of Archaeoglobus infectus sp. nov.

Archaeoglobus infectus (in.fec’tus. L. masc. adj. infectus incomplete, pertaining to the requirement for acetate and coenzyme M for growth).

Cells are irregular cocci (0.5–1.0 μm in diameter) with single flagella and show blue–green fluorescence at 436 nm. Obligately anaerobic. Grows chemolithoheterotrophically by the oxidation of molecular hydrogen, using thiosulfate and sulfate as electron acceptors. Sulfate, elemental sulfur, nitrate, nitrite and Fe(III) are not used as electron acceptors. No organic compounds can be used as electron donors as a substitute for hydrogen. Acetate is required as a carbon source for growth. Coenzyme M is also necessary for growth. Elemental sulfur inhibits growth. Grows at 60–75 °C. Optimum growth occurs at 70 °C, pH 6.5 and 3 % (w/v) NaCl. The genomic DNA G+C content of the type strain is 46.0 mol% (as determined by HPLC).

The type strain, Arc51T (=NBRC 100649T=DSM 18877T), was isolated from a rock sample collected in a hydrothermal vent in Suiyo Seamount, Izu-Bonin Arc, western Pacific Ocean.

Acknowledgements

We thank the team that operated the benthic multi-coring system and the crew of the Dainihakureimaru for collecting the samples. We thank Ms Kuniko Shimamura for technical support. The Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan funded part of this research through the Special Coordination Fund (‘Archaean Park Project’: International Research Project on Interaction Between SubVent Biosphere and Geo-Environments).

References

