Metschnikowia cubensis sp. nov., a yeast species isolated from flowers in Cuba

Abel Fidalgo-Jiménez,1,2 Heide-Marie Daniel,2 Pierre Evrard,2 Cony Decock2 and Marc-André Lachance3

1Instituto de Ecología y Sistemática (IES), Carretera de Varona, km 3 ½ Capdevila, Boyeros, AP 8029, CP 10800, Ciudad de la Habana, Cuba
2Mycothèque de l’Université catholique de Louvain (MUCL), Member of the Belgian Coordinated Collection of Microorganisms (BCCM), Croix du Sud 3, bte 6, 1348 Louvain-la-Neuve, Belgium
3Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada

A novel yeast species is described from 19 strains isolated from flowers and insects in three provinces of Cuba. The species is so far known only from Cuba. Characteristic asc and ascospores as well as phylogenetic analysis of the rDNA sequence place the novel species in the genus Metschnikowia. The novel species belongs to the New World subclade of large-spored species of Metschnikowia. Mating tests with other members of the subclade resulted in the formation of sterile asci without ascospores, showing that the Cuban strains represent a distinct biological species. Intraspecies matings lead to the production of fertile asci containing large needle-shaped ascospores. The novel species was further distinguished from its close relatives by rDNA sequences and PCR fingerprinting using primers derived from mini- and microsatellites. We propose the name Metschnikowia cubensis sp. nov. and designate MUCL 45753T (=CRGF 278T = CBS 10832T, h+) as the type strain and MUCL 45751 (=CRGF 278T = CBS 10833, h−) as the allotype.

Flowers have been known to harbour a significant yeast community since the studies of Boutrix (1884). Members of the genus Metschnikowia were among the first yeasts recovered from this habitat and were thought to be vectored by flower-associated insects (Reukauf, 1911–1912). They are among the best-studied yeasts with respect to their biogeography and ecology (Lachance et al., 2001, 2003). The genus Metschnikowia is characterized morphologically by elongated asc containing long needle-shaped ascospores. Within the genus, a subgroup of nutritionally homogeneous insect-associated Metschnikowia species is recognizable by the formation of generally large ascospores, 100–250 μm length, in contrast to only 20–60 μm in most other Metschnikowia species (Marinoni & Lachance, 2004; Miller & Phaff, 1998). The term ‘large-spored Metschnikowia species’ has been coined based on this character. Members of the group have so far been isolated only from the Americas and Hawai’i, and each species is limited in geographical distribution. Some species were shown to be endemic to the Hawaiian islands (Lachance et al., 2005), and their local distribution is assumed to be due to their close association with small nitidulid beetles and allopatric or peripatric speciation (Lachance et al., 2001; Marinoni & Lachance, 2004). Some Candida species are members of the Metschnikowia clade as seen in phylogenetic analyses of rDNA sequences (Nguyen et al., 2006). Of these, Candida ipomoeae is an integral member of the New World large-spored subclade.

Cuba is recognized as a biodiversity hot spot, with approximately 6500 vascular plant species, of which more than 50% are endemic (Capote et al., 1989; http://www.biodiversityhotspots.org/xp/Hotspots/caribbean/). The National Conservation Strategies for Fungi in Cuba reported the presence of only 10 species of the Saccharomycetales (Mena et al., 2003). This lack of knowledge of the yeasts of this region prompted us to investigate their diversity. The study has led to the finding of several undescribed species (Fidalgo-Jiménez et al., 2005). Nineteen strains were found to represent a novel species of the genus Metschnikowia, for which the name Metschnikowia cubensis sp. nov. is proposed.

Isolation and preservation

Nineteen strains of M. cubensis were found in about 500 samples from flowers of more than 120 plant species and some flower-associated insects taken in Cuba between 2001 and 2005. The samples yielded more than 400 yeast strains.
The distances between the three larger collection areas are between 130 and 440 km. The strains and their isolation substrates are listed in Table 1. More detailed information about the collections is provided in Supplementary Table S1, available in IJSEM Online.

For yeast isolation, flowers were placed in sterile plastic bags or sterile tubes depending on their size. For large flowers (e.g. Malvaceae), 150 μl sterile water was added into each flower to release yeast cells adhering to their surface. Small flowers (e.g. Asteraceae) were taken with sterile forceps and immersed in 1000 μl sterile water. In both cases, 100 μl of the wash fluid was diluted 10-fold and 100 μl of this dilution was spread on DYPA (2 % glucose, 1 % peptone, 0.5 % yeast extract, 2 % agar) supplemented

Table 1. Origins of isolates considered in this study

Numbers following isolation sources signify individual flowers or insects that were sampled in the same location. The locations of the collection sites are given as: country, province, region/park/reserve, sampling location. T, ex type; I, ex isotype.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Mating type</th>
<th>Isolation source</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. cubensis sp. nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUCL 44438, CRGF 82</td>
<td>h−</td>
<td>Flower of Talipariti elatum, Malvaceae</td>
<td>Cuba, La Habana, Boyeros, Instituto de Ecologia y Sistematica</td>
</tr>
<tr>
<td>MUCL 44441, CRGF 83</td>
<td>h−</td>
<td>Flower of T. elatum</td>
<td>As above</td>
</tr>
<tr>
<td>MUCL 45753T, CRGF 279T, CBS 10832T</td>
<td>h+</td>
<td>Flower of T. elatum</td>
<td>Cuba, Sancti Spiritus, Alturas de Banao, path El Regalo</td>
</tr>
<tr>
<td>MUCL 45751, CRGF 278, CBS 10833</td>
<td>h−</td>
<td>Flower of Gesneria humilis, Gesneriaceae</td>
<td>Cuba, Sancti Spiritus, Alturas de Banao, house Maria Antonia</td>
</tr>
<tr>
<td>MUCL 49175, CRGF 826</td>
<td>h+</td>
<td>Flower of Bidens alba var. radiata, Asteraceae</td>
<td>Cuba, Pinar del Rio, Mil Cumbres, on the way to the start of the pipe of the hydroelectric plant</td>
</tr>
<tr>
<td>MUCL 46753, CRGF 752</td>
<td>h+</td>
<td>Flower of Tabebuia sp., Bignoniaceae</td>
<td>Cuba, Pinar del Rio, Mil Cumbres, Reserva San Marcos</td>
</tr>
<tr>
<td>MUCL 51011, CRGF 833</td>
<td>h−</td>
<td>Individual 1 of Conotelus sp. in flower 1 of Ipomoea acuminata, Convolvulaceae</td>
<td>Cuba, Sancti Spiritus, Topes de Collantes, start of path to the Salto de Cabuni</td>
</tr>
<tr>
<td>MUCL 51012, CRGF 842</td>
<td>h+</td>
<td>Individual 1 of Conotelus sp. in flower 1 of I. acuminata</td>
<td>As above</td>
</tr>
<tr>
<td>MUCL 51013, CRGF 834</td>
<td>h+</td>
<td>Individual 3 of Conotelus sp. in flower 1 of I. acuminata</td>
<td>As above</td>
</tr>
<tr>
<td>MUCL 51014, CRGF 835</td>
<td>h+</td>
<td>Flower 1 of I. acuminata</td>
<td>As above</td>
</tr>
<tr>
<td>MUCL 51015, CRGF 836</td>
<td>h−</td>
<td>Ant in flower of T. elatum</td>
<td>Cuba, Sancti Spiritus, Topes de Collantes, south of Hotel Escambray</td>
</tr>
<tr>
<td>MUCL 49859, CRGF 828</td>
<td>h+</td>
<td>Pollen of T. elatum</td>
<td>As above</td>
</tr>
<tr>
<td>MUCL 51016, CRGF 837</td>
<td>h−</td>
<td>Pollen of T. elatum</td>
<td>As above</td>
</tr>
<tr>
<td>MUCL 49860, CRGF 829</td>
<td>h+</td>
<td>Flower 1 of I. acuminata</td>
<td>Cuba, Sancti Spiritus, Topes de Collantes, ~500 m from Hotel Escambray</td>
</tr>
<tr>
<td>MUCL 51017, CRGF 838</td>
<td>h−</td>
<td>Flower 2 of I. acuminata</td>
<td>As above</td>
</tr>
<tr>
<td>MUCL 51018, CRGF 839</td>
<td>h−</td>
<td>Flower 1 of I. acuminata</td>
<td>Cuba, Sancti Spiritus, Topes de Collantes, ~1500 m from Hotel Escambray</td>
</tr>
<tr>
<td>MUCL 49858, CRGF 827</td>
<td>h−</td>
<td>Flower of T. elatum</td>
<td>Cuba, Pinar del Rio, Mil Cumbres, near cabin Los Pinos</td>
</tr>
<tr>
<td>MUCL 51019, CRGF 840</td>
<td>h+</td>
<td>Fallen flower of T. elatum</td>
<td>Cuba, Pinar del Rio, Viñales valley, camp Cueva Los Portales</td>
</tr>
<tr>
<td>MUCL 51020, CRGF 841</td>
<td>h−</td>
<td>Flower 5 of blue Ipomoea sp.</td>
<td>Cuba, Pinar del Rio, Viñales valley, roadside between Viñales and Pons, near path ‘Maravillas de Viñales’</td>
</tr>
</tbody>
</table>

Metschnikowia sp.
MUCL 46232, UWOPS 00-154.1

M. lochheadii
MUCL 46297T, UWOPS 00-133.2T

C. ipomoeae
MUCL 46294T, UWOPS 91-672.1T

— Unknown
Exalloscaptomyza calliginosa collected on *I. acuminata* | USA, Hawaii, Hawaii Island |
with 0.02 % chloramphenicol. Insects were placed on Petri dishes with the same medium, allowed to move around for 2–5 min and then removed. The cultures were incubated at ambient temperature and examined every 12 h for 72 h. Representative colonies of each morphological type were purified and maintained on DYPA. All strains have been deposited in the Collection of Fungal Genetic Resources (CRGF), Cuba, with duplicates at the MUCL. They are preserved on agar slants under oil and under water at CRGF and cryopreserved at −130 °C, lyophilized, on agar slants under oil and under water at MUCL. The type strains were also deposited at the Centraalbureau voor Schimmelcultures (CBS).

Growth characteristics

The strains were characterized by 96 morphological and physiological tests, performed with the microplate-based ALLEV system (Robert et al., 1997), following the methods of Kreger-van Rij (1987) and Van der Walt & Yarrow (1984). The strains showed some slightly variable growth reactions, which are represented in the species description. Measurements of cells and ascospores were obtained based on micrographs with the BioloMICS software (BioAware) and are given in the description.

The mating type for MUCL 45753T h+ and MUCL 45751 h− was determined by mixing active cultures of the two strains on yeast carbon base (Difco) supplemented with 0.01 % ammonium sulphate and 1.5 % agar, followed by periodic examination by phase-contrast microscopy. Quantitative assessment of ascospore formation for selected strains was performed as follows. Cells of active cultures were suspended in sterile water and the cell density was adjusted visually to McFarland standard 2 (≈20 × 10^6 cells ml⁻¹). Five hundred microlitre aliquots of each mating partner were mixed and four 50 µl aliquots of the mixtures were spot-inoculated onto GYA (1 % glucose, 0.01 % yeast extract, 2 % agar) and the plates were incubated at 18 °C. Slides were prepared using cotton blue (5 mg cotton blue ml⁻¹ in lactic acid) and examined every 12 h. For each slide, 50 asci were scored for the presence of ascospores and the results after 72 h incubation are reported in Supplementary Table S2. Mating types were assigned based on the formation of sterile asci in crosses with authentic strains of other species and are thus consistent with those of all other large-spored Metschnikowia species. Species delineation was based on the development of fertile asci with two ascospores in compatible mating reactions. A minimum percentage of 70 % fertile asci was found for the strain combination MUCL 46753T h+ × MUCL 45751 h−. All other intraspecies combinations showed more than 80 % fertile asci (Supplementary Table S2). The combination of M. cubensis strains with compatible mating types of Metschnikowia lochheadii (MUCL 46297 h+, MUCL 46298 h−) and Metschnikowia sp. UWOPS 00-154.1 produced sterile asci.

DNA-based studies

Extraction of high-molecular-mass DNA was performed by a combination of the Qiagen DNeasy procedure and the Invisorb Spin Plant Mini kit (Invitrogen) with modifications. From a culture grown on DYPA for 72 h at 25 °C, three 10 µl loops of cells were resuspended in 600 µl sorbitol buffer (1 M sorbitol, 100 mM sodium EDTA, 14 mM β-mercaptoethanol) and 200 U lyticase (L4025; Sigma). The samples were shaken overnight at 30 °C, the suspension was centrifuged for 2 min at 12 000 r.p.m., the supernatant was discarded, 400 µl lysis buffer P and 20 µl proteinase K were added and finally the mixture was homogenized with a pipette tip and incubated for 30 min at 65 °C. The solution was then transferred onto a spin filter and centrifuged for 5 min at 12 000 r.p.m. and 6 µl RNase (100 mg ml⁻¹ in molecular biology grade water) was then added to the filtrate, which was vortexed briefly and incubated for 5 min at room temperature. Binding buffer P (200 µl) was added and the sample was vortexed briefly and then transferred to a fresh spin filter and centrifuged for 1 min at 12 000 r.p.m. Wash buffer I (550 µl) was then added to the spin filter, which was centrifuged as before; the filtrate was discarded, followed by a similar treatment using wash buffer II and a final treatment with 400 µl wash buffer II and centrifugation for 2 min at 12 000 r.p.m. The DNA was eluted with 100 µl 65 °C molecular biology grade water for 3 min and centrifuged for 1 min at 10 000 r.p.m. This DNA solution, stored at 4 °C for short-term preservation and at −20 °C for long-term preservation, was used for PCR fingerprinting and DNA sequence determinations.

PCR fingerprinting was performed using the minisatellite-specific oligonucleotide derived from the core sequence of the bacteriophage M13 (Vassart et al., 1987) with the sequence 5'-GAGGTTGCGGTTCT-3' and the microsatellite-specific oligonucleotides (GACA)₅, (GTG)₅ and (ATG)₅ as single PCR primers. PCR amplifications were performed in 25 µl reaction volumes containing 10 ng genomic DNA, 0.13 µM primer, 0.2 mM dNTPs, 4.5 mM MgCl₂ and 2.5 U AmpliTaq DNA polymerase (Applied Biosystems). Amplifications were carried out in an Eppendorf Mastercycler programmed for 35 cycles (20 s at 94 °C, 60 s at 50 °C, 20 s at 72 °C), followed by 6 min final extension at 72 °C and cooling to 4 °C. Amplified DNA fragments were separated by electrophoresis in 1.4 % agarose dissolved in TBE buffer, stained with 0.6 × GelRed (approx. 0.8 µg ml⁻¹; Biotium) and photographed under UV light (Fig. 1). The species selection for PCR fingerprint analysis was based on the smallest differences in the D1/D2 large-subunit (LSU) rDNA sequence among type strains of M. cubensis vs Candida ipomoeae with five substitutions and two indels, vs Metschnikowia sp. UWOPS 00-154.1 with three substitutions and four indels and vs M. lochheadii with seven substitutions and one indel. The DNA banding patterns with the primers M13, (GTG)₅ and (ATG)₅ were generally similar within M. cubensis and M. lochheadii, and dissimilar between the four species.
The DNA amplified with the primer (GACA)$_4$ shows a large degree of intraspecies variation in *M. cubensis* and almost identical patterns for MUCL 44441 and MUCL 44438 that were isolated in close proximity to each other, suggesting that (GACA)$_4$ might be most useful for differentiation at the population level.

Phylogenetic relationships

Comparison of D1/D2 sequences of the type and allotype strains originally indicated that *M. cubensis* may be closely related to *M. lochheadii*, *Metschnikowia* sp. strain UWOPS 00-154.1, and *C. ipomoeae*. However, the phylogenetic signals of the D1/D2, internal transcribed spacer (ITS) and intergenic spacer (IGS) components of the nuclear rDNA have been shown not to be perfectly congruent in the large-spored group (Marinoni & Lachance, 2004). Separate phylogenetic analyses of various partitions of the rDNA repeat showed that the LSU, including the D1/D2 region, favoured a sisterhood of *M. cubensis* with *C. ipomoeae* and that the D1/D2 LSU alone lead to the placement of these two taxa next to *M. lochheadii* and UWOPS 00-154.1. Small-subunit (SSU) rDNA trees indicated a sister relationship of *M. cubensis* and *Metschnikowia borealis*, with 70% bootstrap support. No other bootstrap-supported groups could be detected in these analyses, indicating a low information content of SSU sequences for this comparison. As none of the rDNA partitions resolved the relationships, the tree presented in Fig. 2 is based on the complete transcribed region of the rDNA. The IGS sequences could not be aligned in a satisfactory manner and were deleted from the analysis. The sequences

Fig. 1. PCR fingerprinting profiles with primers M13, (GACA)$_4$, (GTG)$_5$ and (ATG)$_5$ for selected strains of *Metschnikowia cubensis* sp. nov. and type strains of the most closely related species. Lanes: M, markers; 1, MUCL 49175; 2, MUCL 46753; 3, MUCL 45753T; 4, MUCL 45751; 5, MUCL 44441; 6, MUCL 44438; 7, *Metschnikowia* sp. UWOPS 00-154.1; 8, *M. lochheadii* UWOPS 00-133.2T; 9, *M. lochheadii* UWOPS 99-661.1T; 10, *Candida ipomoeae* UWOPS 91-672.1T; —, negative control. T, ex type; I, ex isotype.

Fig. 2. Neighbour-joining phylogram of selected large-spored *Metschnikowia* species showing the placement of *M. cubensis* based on 5638 aligned nucleotide positions of rDNA sequences including the external transcribed spacer, SSU gene, internal transcribed spacers 1 and 2, 5.8S gene and the LSU gene. Shown is the tree obtained in MEGA 3.1 under Kimura’s two-parameter model with gapped alignment positions deleted during the pairwise sequence comparisons. The analysis was replicated 1000 times and only bootstrap values greater than 70% are shown. The root was positioned on the midpoint of the longest path between two taxa. Bar, 0.5% sequence divergence.
were obtained as described in Rosa et al. (2007). Analyses by maximum-parsimony (results not shown) and neighbour-joining (Fig. 2) suggest that _M. cubensis_ occupies a fairly basal position within the New World large-spored species. A possible sisterhood with _M. borealis_, an eastern North American endemic, is not supported by bootstrap analysis in the parsimony analysis and received intermediate bootstrap values in the neighbour-joining analysis. The neighbour-joining bootstrap values should be interpreted with caution, as varying rates of nucleotide substitution might lead to incorrect branching patterns receiving high bootstrap values.

Geographical distribution and ecology

The low frequency with which the species was found indicated that its true specific habitat has not yet been identified unequivocally. Strains were obtained either from flowers found in clearings of tropical wet forest, at forest edges, in abandoned gardens or from insects found in flowers (Table 1). These habitats were characterized by a general abundance of ascomycetous yeasts. The relatively large distances between the three larger collection areas, Sierra del Escambray, Cordillera de Guaniguanico and La Habana, and the frequent occurrence of similar disturbed habitats suggest that the species is widely distributed throughout central and western Cuba. On the Peninsula de Guanahacabibes in the far west of Cuba and in the Cuchillas del Toa near the north-eastern coast, where similar numbers of samples were collected and analysed by similar methods, no isolates of _M. cubensis_ have yet been found. Both mating types were present in all collection areas with the exception of La Habana, from where only two isolates are known. From two samples, from _Conotetelus_ sp. and pollen, respectively, two isolates each with opposite mating types were obtained. This and the balanced occurrence of the two mating types among the isolates suggests that the species forms a sexually reproducing population. _M. cubensis_ was isolated from flowers of five plant species and associated insects with a repeated occurrence on _Talipariti elatum_, a tree with hibiscus-like flowers formerly classified as _Hibiscus elatus_, and on _Ipomoea acuminata_. The isolation plates of one _Conotetelus_ sp. individual, the _Ipomoea acuminata_ flower containing _Conotetelus_ sp. and a fallen _Talipariti elatum_ flower were noted for particularly large numbers of 100–200 yeast colonies of homogeneous morphology (Supplementary Table S1). A specific association of New World large-spored _Metschnikowia_ species with floricolous beetles (_Conotetelus_ spp., _Nittidulidae_) has been reported (Lachance et al., 2001, 2003). Beetles of this genus have been found in all sampled localities in North, Central and South America and have been shown to harbour large populations of large-spored _Metschnikowia_ species. Although the current study focused on yeasts of flowers and Cuban _Conotetelus_ sp. were not sampled repeatedly, it is likely that they are involved in the transmission of _M. cubensis_.

Species identification

The genus _Metschnikowia_ is morphologically and physiologically homogeneous (Miller & Phaff, 1998). Identification of _M. cubensis_ is therefore not possible based on these features owing to the similarity with related species. The novel species is included in the genus _Metschnikowia_ based on the large cylindrical ascospores and phylogenetic analysis of rDNA sequences (Fig. 2). _M. cubensis_ can be separated from related _Metschnikowia_ species by reproductive isolation in compatible mating reactions, PCR-fingerprinting profiles produced with the primers M13, (GTG)₅ and (ATG)₅, and by sequencing of D1/D2 LSU or other rDNA components.

Latin diagnosis of Metschnikowia cubensis

Fidalgo-Jiménez, Daniel, Evrard, Decock et Lachance sp. nov.

Post dies tres in medio DYP A cultura parva, convexa, aliquando cum margina filamentosa, candida aut cremea, lucida et rugosa, aliquando cerebriformis. Cellulæ globosæ ad ellipsoidæ (2–4 × 2–5 µm). Cultura in agaro PDA post dies 7 pseudomycelium formatur. Mycelium verum formatum tuborum longorum. Post dies unus, cellulae stirpum inter-fertilium mixtarum in agaro carbonis fundamento tubi junctionis formatur. Post dies tres, magni asci cylindrati (80–120 µm) possunt videri. Asci stables sunt. Ascosporae aculeatae. Glucosum, galactosum et trehalosum (amnia variabile) fermentantur. Glucosum, galactosum, L-sorbusosum, D-xilosum, sucrosum (aliquando exigue), malthosum, trehalosum, cellobiosum, salicinum, arbutinum (aliquando exigue), melezitosum, glycerulum (aliquando exigue), xylitolum (aliquando exigue), glucosum, mannotetum, gluconactonum (variabile), 2-kteliglucconatum, D-gluconatum (aliquando exigue), acedum succinicum (aliquando exigue), ethanolum (aliquando exigue), propanum, 1,2-diolum (aliquando exigue), assimilantur at non D-glucosaminum, D-ribosum (variabile), L-arabinosum, D-arabinosum, L-rhamnusosum, methyl-α-D-glucosidum, melibiosum, lactosum, raffinosum, inulinum, erythritolium, ribitolium (aliquando exigue), L-arabinitolum, galactitolium, myo-inositolum, 5-kteliglucconatum (aliquando exigue), D-glucronatum, acedum lacticum (aliquando exigue), acedum citricum (aliquando exigue), methanolum nec butanum, 2,3-diolum (aliquando exigue). Ethylaminum, lysinum et cadaverinum assimilantur at non natrium nitricum nec natrium nitrosum, creatininum (variabile), creatininum, glucosaminum aut imidazolium. Ad crescensionem biotininum et thiamininum externa necessaria sunt. Augmentum in 30 °C, at non 37 °C.

Typus MUCL 45753¹ e flore Talipariti elatum et allotypus MUCL 45751 e flore Gesneria humilis, Cuba. In collectione zymotica Centraalbureau voor Schimmelcultures, Trajectum ad Rhenum, sub no. CBS 10832⁷ et CBS 10833 depositae sunt.

¹ Downloaded from www.microbiologyresearch.org by
IP: 54.70.40.11
On: Sun, 30 Dec 2018 04:08:16
Description of Metschnikowia cubensis
Fidalgo-Jiménez, Daniel, Evrard, Decock et Lachance sp. nov.

Metschnikowia cubensis (cu.ben’sis. N.L. nom. fem. sing. adj. cubensis of Cuba, referring to the country where all currently known strains were recovered).

Mycopank number: MB 511354.

After 72 h on DYPA at 25 °C, colonies are small, circular, convex, occasionally with a mycelial margin, white to cream, glistening and rugose. Some colonies are cerebriform. No pigment is observed. Cells are ovoidal to ellipsoidal, occur singly or in pairs and measure 2–4 × 2–5 μm (Fig. 3). Vegetative reproduction by multilateral budding is observed. In Dalmau plate cultures on PDA (potato dextrose agar 3.9 %, agar 0.2 %) after 7 days at 25 °C, pseudomycelium is formed and, more rarely, also true hyphae with rare septa are present. After 12 h on GYA at 18 °C, mixed cultures of complementary mating types show conjugated cells, zygotes and immature asci. After 3 days, mature and immature asci are present. Asci are large and cylindrical, usually retaining the original zygote. Mature asci contain two needle-shaped ascospores measuring 80–120 μm in length (Fig. 3). Evanescence of asci is not observed after 30 days of incubation. Glucose, galactose and trehalose fermentation is variable. Reactions are listed as observed in the type strain; reactions of additional strains are indicated in parentheses. Glucose, galactose, L-sorbose, xylose, sucrose (sometimes weak), maltose, trehalose, cellobiose, salicin, arbutin (sometimes weak), melezitose, glycerol (sometimes weak), xylitol (sometimes weak), glucitol, mannitol, D-glucono-1,5-lactone (variable), 2-keto-D-gluconate, D-gluconate (sometimes weak), succinate (sometimes weak), ethanol (variable and weak) and propane-1,2-diol (variable and weak) are assimilated, but not D-glucosamine, D-ribose (variable), L-arabinose, D-arabinose, L-rhamnose, methyl α-D-glucoside, melibiose, lactose, raffinose, inulin, erythritol, ribitol (sometimes weak), L-arabinitol, galactitol, myo-inositol, 5-ketogluconate (sometimes weak), D-glucuronate, D-galacturonate, D-lactate (sometimes weak), citrate (sometimes weak), methanol or butane-2,3-diol (sometimes weak). Ethylamine, L-lysine and cadaverine are utilized as nitrogen sources, but not nitrate, nitrite, creatine (variable), creatinine, glucosamine or imidazole. Biotin and thiamine are required for growth. Arbutin hydrolysis is variable. Growth is not observed in the presence of 0.1 % cycloheximide or 1 % acetic acid. Grows in the presence of 50 % glucose. Starch formation, acetic acid production and urea hydrolysis are not observed. The Diazonium blue B reaction is negative. Grows at 30 °C but not at 37 °C.

The type strain is strain MUCL 45753T (h+ = CRGF 279T = CBS 10832T), isolated as I-206 by one of the authors (A.-F.-J.) from a flower of Talipariti elatum on 27 January 2004 at vereda El Regalo, Alturas de Banao, Province Santi Spiritus, Cuba. The allotype strain is strain MUCL 45751 (h2 = CRGF 278 = CBS 10833), isolated as I-254 by one of the authors (A.-F.-J.) from a flower of Gesneria humilis on 29 January 2004 at casa Maria Antonia, Alturas de Banao, Province Santi Spiritus, Cuba.

Acknowledgements

This research was supported by the Conseil Inter-Universitaire de la Communauté Française de Belgique: Commission Universitaire pour le Développement (CIUF-CUD-MUCL-Cuba), the Belgian Federal Science Policy (BCCM C2/10/007 and BCCM C3/10/003) and the European Commissions Marie Curie Mobility Actions (MIRG-CT-2005-016539). A.-F.-J. thanks the Cuban Ministry of Science, Technology and Environment for providing facilities and financial support. M.-A. L. acknowledges funding from the Natural Science and Engineering Research Council of Canada. We greatly appreciate the assistance of R. Oviedo, I. Ventosa and I. Fuentes with plant identification, R. Carbonell Paneque for supporting work at the field station of Mil Cumbres, S. de Pedro Alderete for some of the yeast collections, S. Huret and C. Bivort with the generation of the DNA sequences and M. C. Moons with physiological characterization.

Fig. 3. Phase-contrast micrographs of M. cubensis MUCL 45753T. (a) Vegetative cells on DYPA at 25 °C after 72 h. (b, c) Strain MUCL 45753T in mixture with allotype MUCL 45751 on GYA at 18 °C after 72 h showing a sterile ascus (b) and an ascus with two ascospores (c). Bars, 10 μm.
References

