Alteromonas genovensis sp. nov., isolated from a marine electroactive biofilm and emended description of *Alteromonas macleodii* Baumann *et al.* 1972 (Approved Lists 1980)

Ilse Vandecandelaere,1 Olivier Nercessian,2 Eveline Segaert,1 Wafa Achouak,2 Alfonso Mollica,3 Marco Faimali,3 Paul De Vos1 and Peter Vandamme1

Correspondence
Ilse Vandecandelaere
Ilse.Vandecandelaere@UGent.be

1Laboratorium voor Microbiologie, Vakgroep Biochemie, Fysiologie en Microbiologie, Universiteit Gent, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium
2LEMiR, Laboratoire d’Ecologie Microbienne de la Rhizosphère, CNRS-CEA-Université de la Méditerranée, DEV, Dpt Ecophysiologie Végétale et de Microbiologie/DSV CEA Cadarache, 13108 Saint Paul Lez Durance, France
3Istituto di Scienze Marine – Consiglio Nazionale delle Ricerche (ISMAR-CNR), Via de Marini 6, 16149 Genoa, Italy

Thirty-five isolates obtained from a marine electroactive biofilm grown on a stainless steel cathode (Genoa, Italy) were investigated by a polyphasic taxonomic approach. Whole-cell fatty acid methyl ester analysis indicated that the isolates belonged to the class *Gammaproteobacteria* and were closely related or belonging to the genus *Alteromonas*. Genomic fingerprinting using the BOX-PCR primer delineated five clusters of isolates with similar BOX-PCR fingerprints. This study demonstrated that isolates from four of the BOX-PCR clusters belonged to *Alteromonas macleodii* and that the 14 isolates representing BOX-PCR cluster 1 constituted a novel species, which shared 98.4 % 16S rRNA gene sequence similarity with its nearest phylogenetic neighbour, *Alteromonas hispanica*. Both phenotypic and genotypic analyses enabled this novel species, for which the name *Alteromonas genovensis* sp. nov. is proposed, to be differentiated from established species of the genus *Alteromonas*. The DNA G+C content of *Alteromonas genovensis* sp. nov. is 44.5 mol% and the type strain is LMG 24078T (=CCUG 55340T).

The genus *Alteromonas* was created by Baumann *et al.* (1972, 1984) to accommodate Gram-negative, strictly aerobic, heterotrophic rods that are motile by a single polar flagellum. Gauthier *et al.* (1995) restricted the genus *Alteromonas* to the type species, *Alteromonas macleodii*, and transferred all the remaining species into the genus *Pseudoalteromonas*. Since then, several marine bacteria have been classified as novel *Alteromonas* species and eight further species have been described: *Alteromonas macleodii* (Baumann *et al.*, 1972), *A. marina* (Yoon *et al.*, 2003), *A. stellipolaris* (Van Trappen *et al.*, 2004), *A. litorea* (Yoon *et al.*, 2004), *A. addita* (Ivanova *et al.*, 2005), *A. hispanica* (Martínez-Checa *et al.*, 2005), *A. tagae* (Chiu *et al.*, 2007) and *A. simiduii* (Chiu *et al.*, 2007).

The genus *Alteromonas* has gained increasing interest because of potential industrial applications (Hayase *et al.*, 2003; Kodama *et al.*, 1993; Martínez-Checa *et al.*, 2005; Raguenes *et al.*, 2003, 1996; Shiozawa *et al.*, 1993).

Van Trappen *et al.* (2004) emended the description of the genus *Alteromonas* by reporting the formation of prosthecae and buds in several species when grown for 3 or more days at low temperatures. The presence of prosthecae and buds enhances the bacterial surface:volume ratio, which facilitates substrate uptake in oligotrophic marine environments (Van Gemerden & Kuenen, 1984). Marine prosthecate bacteria also play a role in the corrosion of metals as they biologically catalyse the ennoblement of stainless steel surfaces (Baker *et al.*, 2003).

The present study was part of an analysis of the microbial diversity of a marine electroactive biofilm grown on a...
stainless steel cathode (EA-BIOFILMS-508866, NEST) exposed to natural seawater at the ISMAR-CNR Marine Station, located in the port of Genoa, Italy. Stainless steel samples (25 × 10 mm), cut from a UNS S 31254 plate (1 mm thick), were drilled, screwed and then treated with emery papers up to P1200. They were immersed in a tank of about 100 l natural seawater at ambient temperature. The seawater was continuously renewed at a rate of about 1.5–2.0 l min⁻¹ with water pumped directly from the sea.

The stainless steel electrode was cathodically polarized at −200 mV Ag/AgCl (e.g. Faimali et al., 2008). Current flowing from the 'n'th polarized sample was calculated from the ohmic drop, ΔVₙ, measured across the resistor, Rₙ, whose value was chosen in such a way that a ΔVₙ less than 10 mV was measured. During the tests, the cathodic current on all polarized samples was regularly measured and recorded.

The current increased and stabilized at 0.5 A m⁻² in less than 10 days and microscopic analysis (400 × magnification using an Olympus BX41 epifluorescence microscope coupled with a UV filter block for DAPI) showed biofilm formation on the cathode. The biofilm was removed from the stainless steel cathode by sonication (Branson 3200) (90 s) in a sterile plastic tube containing 30 ml 0.85 % NaCl solution. Diluted cell suspensions (10⁻¹ to 10⁻⁶) were inoculated on marine agar (MA; Difco 2216) and incubated aerobically at 20 °C for several days. Pure cultures were obtained and isolates were stored at −20 °C or −80 °C using MicroBank vials.

All isolates were tentatively identified using whole-cell fatty acid methyl ester analysis as described by Mergaert et al. (2001). For 35 isolates, comparison of the fatty acid methyl ester profiles with a commercial database (MIS) indicated that they belonged to the class *Alteromonas* (2001). For 35 isolates, comparison of the fatty acid methyl ester profiles with a commercial database (MIS) indicated that they belonged to the class *Alteromonas*. These data correlated with *Alteromonas*-like bacteria constituting considerable fractions of attached marine microbial populations (Acinas et al., 1999; Dang & Lovell, 2000). In addition, *Alteromonas*-like bacteria are also frequent producers of extracellular polymer substances, which is important in the context of biofilm formation (Branda et al., 2005; Flemming & Wingender, 2001). The dominant fatty acids of the 35 isolates were C₁₀:0 3-OH (2.2 ± 0.8 %), C₁₁:0 3-OH (1.4 ± 0.5 %), C₁₂:0 (3.3 ± 1.1 %), C₁₂:0 3-OH (2.2 ± 1.2 %), C₁₄:0 (3.4 ± 0.9 %), C₁₅:0 i18:0 (1.2 ± 0.6 %), C₁₆:0 (19.4 ± 2.3 %), C₁₇:0 (2.6 ± 0.7 %), C₁₇:1ω8c (5.7 ± 1.9 %), C₁₈:0 (1.1 ± 0.5 %), C₁₈:ω7c (13.6 ± 3.4 %), summed feature 2 (which comprises any combination of C₁₂:0 aldehyde, an unknown fatty acid of equivalent chain-length 10.928, iso-C₁₆:1 I and C₁₆:0 3-OH; 4.5 ± 1.7 %) and summed feature 3 (C₁₆:0ω7c and/or iso-C₁₅:0 2-OH; 30.5 ± 3.0 %); the remaining fatty acids constituted minor fractions only (<1 %). These results correlated with previous fatty acid analyses of members of the genus *Alteromonas* (Ivanova et al., 2000).

DNA was extracted according to Pitcher et al. (1989). The genetic diversity among the 35 isolates and type strains of *Alteromonas* species was investigated by repetitive DNA-PCR (rep-PCR) fingerprinting using the BOX-A1R-primer (5’-CTAGGCAAGCGACGTACG-3’) (Versalovic et al., 1994) as described by Rademaker & De Bruijn (1997) and Rademaker et al. (2000). Numerical analysis of the obtained DNA profiles using the BIONUMERICS 4.61 software (Applied Maths) revealed five clusters of isolates with similar BOX-PCR profiles (at least 55.2 % intra-cluster profile similarity) (Fig. 1): cluster 1 (14 isolates), cluster 2 (9 isolates), cluster 3 (5 isolates), cluster 4 (3 isolates) and cluster 5 (4 isolates). The BOX-PCR profiles of these isolates also differed from those of the *Alteromonas* type strains. Each of the clusters comprised some isolates with virtually indistinguishable profiles suggesting that they represent isolates of the same strain. However, each cluster also comprised isolates with marked differences in their PCR fingerprints, indicating the presence of multiple strains.

The DNA G+C contents of representatives of each BOX-PCR cluster were determined. DNA was degraded enzymically into nucleosides as described by Mesbah et al. (1989). The nucleoside mixture obtained was then separated using a Waters Breeze HPLC system and Xbridge Shield RP18 column thermostabilized at 37 °C. The solvent was 0.02 M NH₄H₂PO₄ (pH 4.0) with 1.5 % acetonitrile. Non-methylated lambda phage (Sigma) and *Escherichia coli* LMG 2093 DNA were used as calibration reference and control, respectively. The DNA G+C contents of representatives of BOX-PCR clusters 1, 2, 3, 4 and 5 were 44.6–45.4 mol%, which correlated with the DNA G+C data reported for members of the genus *Alteromonas* (Gauthier et al., 1995) (see Supplementary Table S1 in IJSEM Online).

Almost-complete 16S rRNA gene sequences (1339–1501 bp) were subsequently obtained for two representatives per BOX-PCR cluster using the universal primers pA (5’-AGAGTTTGATCCTGGCTCAG-3’) and pH (5’-AAGAGGTGATCCAGCGCA-3’; Edwards et al., 1989) as described previously (Mergaert et al., 2001). The FASTA program was used to find the most similar sequences in public databases. Sequences were aligned using CLUSTAL_X (Thompson et al., 1997) and edited using BIOEDIT (Hall, 1999) and FORCON (Raes & Van De Peer, 1999). A neighbour-joining dendrogram was constructed (Saitou & Nei, 1987) using the TRECON software (Van De Peer & De Wachter, 1994) (Fig. 2).

The similarity in 16S rRNA gene sequences among isolates of the same BOX-PCR cluster was always ≥99.1 % (data not shown). The similarity is particularly similar rep-PCR profiles are closely related (Rademaker & De Bruijn, 1997; Versalovic et al., 1994).

Representatives of BOX-PCR clusters 2, 3, 4 and 5 exhibited relatively high 16S rRNA gene sequence similarities (97.6–99.2 %) and were 97.6–99.6 % similar to *A. macleodii* LMG 2843T and *A. marina* LMG 22057T, their nearest phylogenetic neighbours (Fig. 2). BOX-PCR cluster 1 isolates exhibited less than 97 % 16S rRNA gene sequence similarity to the...
isolates of BOX-PCR clusters 2, 3, 4 and 5, suggesting that BOX-PCR cluster 1 isolates represent a distinct species (Stackebrandt & Goebel, 1994). The nearest phylogenetic neighbour of BOX-PCR cluster 1 isolates was *A. hispanica* with 98.4% 16S rRNA gene sequence similarity.

DNA–DNA hybridization experiments were performed to elucidate the taxonomic position of the isolates. Two representative isolates per BOX-PCR cluster were selected on the basis of their BOX-PCR fingerprints to include isolates with the most diverse BOX-PCR profiles (Fig. 1). Their genomic relatedness towards *A. macleodii* LMG 2843^T, *A. hispanica* LMG 22958^T, *A. addita* LMG 22532^T, *A. stellipolaris* LMG 21861^T, *A. litorea* LMG 23846^T and *A. marina* LMG 22057^T was also determined. DNA–DNA hybridization experiments were carried out with photobiotin-labelled probes in microplate wells, as described by Ezaki et al. (1989), using an HTS7000 Bio Assay Reader.

Fig. 1. Dendrogram representing the BOX-PCR fingerprints of *Alteromonas genovensis* sp. nov. (BOX-PCR cluster 1), BOX-PCR clusters 2, 3, 4 and 5, and *Alteromonas* reference strains. Fingerprints were clustered by UPGMA using Pearson’s product correlation coefficient.
(Perkin Elmer) for the fluorescence measurements. The hybridization temperature was 39 °C and reciprocal reactions were performed for every pair of strains. DNA–DNA hybridization values are available in Supplementary Table S1 in IJSEM Online.

The DNA–DNA hybridization values among isolates of the same BOX-PCR cluster were very high, ranging from 80 ± 1 % (BOX-PCR cluster 5) to 98 ± 2 % (for BOX-PCR cluster 4). This again confirms that the isolates within one BOX-PCR cluster are closely related and belong to the same species (Wayne et al., 1987).

DNA–DNA hybridization values among representatives of BOX-PCR clusters 2, 3, 4 and 5 were moderate to high (a mean value of 66 ± 1 % was obtained). Isolates of BOX-PCR clusters 2 and 5 revealed high (>90 %) DNA–DNA hybridization values towards A. macleodii LMG 2843T; BOX-PCR clusters 3 and 4 isolates revealed DNA–DNA hybridization values of 65 ± 2 % towards A. macleodii LMG 2843T. DNA–DNA hybridization values towards A. marina and all other Alteromonas species examined were low (ranging from 34 ± 2 % to 43 ± 1 %). In addition, DNA–DNA hybridization values of BOX-PCR cluster 1 isolates towards isolates from BOX-PCR clusters 2, 3, 4 and 5 were low (mean of 19 ± 2 %), as were the DNA–DNA hybridization values between BOX-PCR cluster 1 isolates and A. hispanica LMG 22958T (37 ± 2 %), their nearest phylogenetic neighbour, and all other Alteromonas species examined (23 ± 2 % or less).

Fig. 2. Dendrogram depicting the 16S rRNA gene sequences of Alteromonas genovensis sp. nov., representatives of the BOX-PCR clusters and reference strains of the genera Alteromonas, Colwellia and Glaciecola. Bar, 1 % 16S rRNA gene sequence diversity. Bootstrap values (1000 replicates) above 50 % are shown.
The following morphological, physiological and biochemical tests were performed on one representative isolate per BOX-PCR cluster. Colony morphology was described after 4 days incubation at 20 °C on MA. Cells were tested for their Gram reaction and catalase and oxidase activities.

Growth on nutrient agar (NA), tryptcase soy agar (TSA), R2A and peptone/yeast extract/glucose agar (PYG) (Tan & Rüger, 1999) was recorded. The optimal NaCl concentration and the optimal growth temperature were determined using R2A supplemented with 1–20 % NaCl and incubated for 2 weeks at 20 °C and MA incubated at 4–45 °C for 2 weeks, respectively. The effect of pH on growth was analysed using marine broth growth medium (Difco 2216) at pH 5.0–10.0 (at intervals of 0.5 pH units) incubated at 20 °C for 7 days.

Degradation of casein and chitin (Reichenbach & Dworkin, 1981), DNA [using DNA agar (Difco) containing 0.01 % toluidine blue (Merck)], starch and l-tyrosine (Barrow & Feltham, 1993) was tested and the reactions were read after 5 days incubation at 20 °C. The isolates were inoculated on Sierra’s medium to determine their lipolytic activity and incubated for 10 days at 20 °C (Sierra, 1957).

The susceptibility to the following antibiotics (Oxoid) was tested on MA plates using the disc diffusion method: ampicillin (25 μg), cefoxitin (30 μg), gentamicin (10 μg), erythromycin (15 μg) and kanamycin (30 μg). Results were read after 3 days incubation at 20 °C.

Biochemical characteristics from commercial microtest galleries (API ZYM, API 20E and API 20NE) were assessed according to the manufacturer’s instructions. API ZYM was read after 4 h incubation at 20 °C, whereas API 20E and API 20NE were read after 24 h incubation at 20 °C.

The cell morphology of BOX-PCR cluster 1 isolate LMG 24078^T was determined by transmission electron microscopy. Cells were negatively stained with 2 % uranyl acetate. Ultrathin sections were prepared and analysed as described by Mast et al. (2005) (Fig. 3). Additional electron micrographs are available as Supplementary Fig. S1 in IJSEM Online.

Results of the phenotypic tests are listed in Table 1. Isolates representing BOX-PCR clusters 2, 3, 4 and 5 had the same phenotypic profile as A. macleodii LMG 2843^T. In addition, phenotypic characteristics clearly discriminated the isolates of BOX-PCR cluster 1 from A. hispanica, their nearest phylogenetic neighbour, and from the other Alteromonas species.

In conclusion, although DNA–DNA hybridization experiments revealed some diversity among isolates of clusters 2, 3, 4 and 5, this polyphasic taxonomic study demonstrated that they are all most appropriately classified as A. macleodii. Isolates of BOX-PCR cluster 1 constituted a novel species within the genus Alteromonas, for which the name Alteromonas genovensis sp. nov. is proposed.

Description of Alteromonas genovensis sp. nov.

Alteromonas genovensis (ge.no.ven’s.is. N.L. fem. adj. genovensis pertaining to Genoa, Italy, where the seawater electroactive biofilms originated).

Cells are Gram-negative rods (0.9 × 1.8 μm), motile by a single polar flagellum. Buds and prosthecae are formed when isolates are grown at lower temperatures (15 °C) for more than 3 days. Prostheca formation is peritrichous and prosthecae are short and straight. The prosthecae are most often found on aggregated cells derived from the bacterial colony. These cell aggregates and, to a lesser extent, isolated bacteria are covered by a layer of fibrillar material. Buds are formed on mother and daughter cells (Fig. 3). Colonies are beige, round and 2 mm in diameter. The surface is smooth and convex. Growth occurs after 2 days incubation on MA at 20 °C; no growth occurs on TSA, R2A or PYG medium. Moderately halophilic and psychrotolerant. Temperature range for growth is 4–37 °C; no growth occurs at 40 °C or more. NaCl range for growth is 2–15 %; no growth occurs at 1 or 20 % NaCl. The pH range for growth is 6.0–8.5; the optimal pH for growth is 7.0–8.0. Catalase and oxidase activities are observed. Degrades aesculin and casein, but not tyrosine or DNA. Weakly hydrolyses starch and gelatin; weak lipolysis of Tween 80 is observed. Positive for α-chymotrypsin, alkaline phosphatase, leucine arylamidase, cystine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase, β-galactosidase, esterase (C4) and esterase lipase (C8) activities. Weak lipase (C14) and trypsin activities. No activity is detected for β-glucuronidase, N-acetyl-β-glucosaminidase, α-mannosidase, α-fucosidase, arginine dihydrolase or urease. Nitrate is not reduced to nitrite or nitrogen. No indole production, fermentation of glucose or assimilation of glucose, arabinose, mannose, mannnitol, N-acetylglucosal...
mine, maltose, potassium gluconate, capric acid, adipic acid, malate, citrate or phenylacetic acid. Resistant to ampicillin (25 mg) and cefoxitin (30 mg), but not to gentamicin (10 mg) or erythromycin (15 mg). Intermediately susceptible to kanamycin (30 mg). The dominant fatty acids are C10 : 0 3-OH, C11 : 0 3-OH, C12 : 0, C12 : 0 3-OH, C14 : 0, C16 : 0, C17 : 0, C17 : 1 ω8c, C18 : 0, C18 : 1 ω7c, summed feature 2 and summed feature 3.

The type strain, LMG 24078T (=CCUG 55340T), was isolated from a marine electroactive biofilm grown on a stainless steel cathode (Genoa, Italy). A second isolate with a distinct BOX-PCR fingerprint is LMG 24079 (Fig. 1). The DNA G+C content of the type strain is 44.5 mol%.

Table 1. Summary of the results of phenotypic tests for *Alteromonas genovensis* sp. nov., BOX-PCR clusters 2, 3, 4 and 5, and *Alteromonas* reference strains

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>Marine electroactive biofilm, Genoa, Italy</td>
<td>Hypersaline water, Fuente de Piedra, Malaga, Spain</td>
<td>Intertidal sediment, Yellow Sea, Korea</td>
<td>Seawater, East Sea, Korea</td>
<td>Seawater, Hawaii + Marine electroactive biofilm (Genoa, Italy)</td>
</tr>
<tr>
<td>Growth in NaCl at:</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15%</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth at:</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 °C</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth on TSA</td>
<td></td>
<td></td>
<td></td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Hydrolysis of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starch</td>
<td>W</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Gelatin</td>
<td>W</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Tyrosine</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Casein</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Tween 80</td>
<td>W</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Enzymic activity:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Chymotrypsin</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipase (C14)</td>
<td>W</td>
<td>w</td>
<td>w</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Valine arylamidase</td>
<td></td>
<td>w</td>
<td>w</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Trypsin</td>
<td>W</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Glucosidase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Galactosidase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Glucosidase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptibility to:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampicillin (10 μg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erythromycin (15 μg)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin (10 μg)</td>
<td>+</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanamycin (30 μg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefoxitin (30 μg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>44.5</td>
<td>46.3</td>
<td>46.0</td>
<td>44.5</td>
<td>45.2</td>
</tr>
</tbody>
</table>

Emended description of *Alteromonas macleodii*

Baumann et al. 1972 (Approved Lists 1980)

The description is as given by Baumann *et al.* (1972, 1984), Gauthier *et al.* (1995), Van Trappen *et al.* (2004) and Yi *et al.* (2004) with the following additions. Hydrolyses DNA and L-tyrosine. Grows on TSA, but not on NA, R2Ao or PYG. The NaCl range for growth is 1–12%; no growth occurs in the presence of 15% NaCl. Grows at 45 °C. No H2S production. Susceptible to the following antibiotics: ampicillin (10 μg), erythromycin (15 μg), gentamicin (10 μg), kanamycin (30 μg) and cefoxitin (30 μg). Lipase (C14), α-glucosidase, α-galactosidase, β-glucosidase, cystine arylamidase and β-galactosidase activities have been recorded, although these...
data conflict with results obtained by Yi et al. (2004). The reason for this discrepancy is unclear.

Acknowledgements

This work is funded by the European Commission [EA-BIOFILMS-508866 (NEST)]. The Fund for Scientific Research – Flanders (FWO – Vlaanderen) is acknowledged for financial support of P.V.

References

