Sphingopyxis ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea

Myungjin Lee, Leonid N. Ten, Hae-Won Lee, Hyun Woo Oh, Wan-Taek Im and Sung-Taik Lee

1Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
2Department of Biology and Medicinal Science, Pai Chi University, 14 Yeonja-1-Gil, Seo-Gu, Daejeon 302-735, Republic of Korea
3Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIIBB), 52 Oeundong, Yusong-gu, Daejeon 305-333, Republic of Korea

A major cultivation area of ginseng plant (Panax ginseng C.A. Meyer) in South Korea includes Pocheon, Kanghwa, Geumsan, Chonkok, Kimpo, Yongin, Anseong and Suhsan. During the course of a study on the culturable aerobic bacterial community in soil from a ginseng field in Pocheon province, a large number of novel bacterial strains were isolated (Im et al., 2005). One of these isolates (strain Gsoil 250T) appeared to be a member of the genus Sphingopyxis in the Alphaproteobacteria lineage and was subjected to a taxonomic investigation.

The genus Sphingopyxis was first described by Takeuchi et al. (2001) and at present the genus comprises eight species: Sphingopyxis macrogoltabida (Takeuchi et al., 1993, 2001), Sphingopyxis terrae (Takeuchi et al., 1993, 2001), Sphingopyxis witflariensis (Kämpfer et al., 2002), Sphingopyxis alaskensis (Vancanneyt et al., 2001; Godoy et al., 2003), Sphingopyxis chilensis (Godoy et al., 2003), Sphingopyxis flavimaris (Yoon & Oh, 2005), Sphingopyxis baikryungensis (Yoon et al., 2005) and Sphingopyxis taejonensis (Pal et al., 2006).

In the present study, we conducted a phylogenetic analysis based on 16S rRNA gene sequences, DNA–DNA hybridization and an analysis of the phenotypic, genotypic and chemotaxonomical characteristics to determine the precise taxonomic position of strain Gsoil 250T. On the basis of the results obtained in this study, we propose that strain Gsoil...
Strain Gsoil 250\textsuperscript{T} was isolated originally from a soil sample from a ginseng field in Pocheon province (South Korea) by using modified R2A medium, as described previously (Ten et al., 2006). Single colonies on the plates were purified by transferring them onto fresh plates of modified R2A or half-strength modified R2A agar and incubating again. Purified colonies were tentatively identified from partial sequences of the 16S rRNA gene (Im et al., 2005). Strain Gsoil 250\textsuperscript{T} was one of the isolates that appeared on the plates under aerobic conditions. The strain was cultured routinely on R2A agar (Difco) at 30 °C and maintained as a glycerol suspension (20\%, w/v) at −70 °C.

The Gram reaction was performed by using the non-staining method as described by Buck (1982). Cell morphology was observed using a Nikon light microscope at ×1000, with cells grown for 3 days at 30 °C on R2A agar. Catalase activity was determined by bubble production in 3\% (v/v) H\textsubscript{2}O\textsubscript{2} and oxidase activity was determined using 1\% (w/v) tetramethyl p-phenylenediamine. Anaerobic growth, nitrate reduction and assimilation of single carbon sources were determined at 30 °C as reported previously (Ten et al., 2006). Some physiological characteristics were determined using API 20E galleries according to the instructions of the manufacturer (bioMérieux). Tests for degradation of DNA (in which DNase agar (Scharlau) plates were flooded with 1 M HCl), casein, chitin, starch (Atlas, 1993), lipid (Kouker & Jaeger, 1987), xylan and cellulose (Ten et al., 2004) were performed and evaluated after 5 days. Growth at different temperatures (4, 15, 25, 30, 37 and 42 °C) and various pH values (pH 5.0–10.0, in increments of 0.5 pH units) was assessed after 5 days incubation. Salt tolerance was tested on R2A medium supplemented with 1–10\% (w/v) NaCl after 5 days incubation. Growth on nutrient agar, trypti-case soy agar (TSA; Difco) and MacConkey agar was also evaluated at 30 °C.

Extraction of the genomic DNA was achieved using a commercial genomic DNA extraction kit (Core Biosystem), and PCR-mediated amplification of the 16S rRNA gene and sequencing of the purified PCR product were carried out according to Kim et al. (2005). The full sequence of the 16S rRNA gene was compiled using SeqMan software (DNASTAR). The 16S rRNA gene sequences of related taxa were obtained from the GenBank database. Multiple alignments were performed by using the program CLUSTAL_X (Thompson et al., 1997). Gaps were edited in the program BioEdit (Hall, 1999). The evolutionary distances were calculated using the Kimura two-parameter model (Kimura, 1983). Phylogenetic trees were constructed using the neighbour-joining (Saitou & Nei, 1987) and maximum-parsimony (Fitch, 1971) methods in the program MEGA3 (Kumar et al., 2004), with bootstrap values based on 1000 replications (Felsenstein, 1985).

To measure the G+C content of the chromosomal DNA, the genomic DNA of the strains was extracted and purified as described by Moore & Dowhan (1995) and enzymically degraded into nucleosides. The DNA G+C content was then determined as described by Mesbah et al. (1989) using reversed-phase HPLC. Isoprenoid quinones were extracted with chloroform/methanol (2:1, v/v), evaporated under vacuum conditions, and re-extracted in n-hexane-water (1:1, v/v). The crude quinone in n-hexane was purified using Sep-Pak Vac cartridges (Waters) and was subsequently analysed by HPLC, as described previously (Hiraishi et al., 1996). Cellular fatty acids were analysed in organisms grown on TSA for 2 days. The cellular fatty acids were saponified, methylated and extracted according to the protocol of the Sherlock Microbial Identification System (MIDI). The fatty acids were then analysed by gas chromatography (model 6890; Hewlett Packard) using the Microbial Identification software package (Sasser, 1990). Polar lipids were extracted using the procedures described by Minnikin et al. (1984) and identified by two-dimensional TLC followed by spraying with appropriate detection reagents (Komagata & Suzuki, 1987).

Cells of strain Gsoil 250\textsuperscript{T} were Gram-negative, aerobic, motile and rod-shaped (0.2–0.3 μm in diameter and 1.0–1.2 μm in length), with single polar flagella (see Supplementary Fig. S1, available in IJSEM online). The strain could not grow anaerobically supplemented with nitrate. Colonies grown on R2A agar plates for 4 days were smooth, circular, non-glossy, yellowish in colour and 1–3 mm in diameter. On R2A agar, strain Gsoil 250\textsuperscript{T} was able to grow at 4–42 °C, but not at 45 °C. Physiological characteristics of strain Gsoil 250\textsuperscript{T} are summarized in the species description and selected characteristics that differentiate it from related Sphingopyxis species are listed in Table 1.

The 16S rRNA gene sequence of strain Gsoil 250\textsuperscript{T} obtained was a continuous stretch of 1455 bp. Sequence similarity calculation after a neighbour-joining analysis indicated that the closest relatives of strain Gsoil 250\textsuperscript{T} were S. macrogolatabida NBRC 15033\textsuperscript{T} (98.7\%), S. chilensis LMG 20986\textsuperscript{T} (98.2\%), S. alaskensis LMG 18877\textsuperscript{T} (97.9\%), S. taegonzensis KCTC 2884\textsuperscript{T} (97.9\%) and S. witflariensis DSM 14551\textsuperscript{T} (97.8\%). Lower sequence similarities (<96.2\%) were found with other established species of the genus Sphingopyxis. This relationship between strain Gsoil 250\textsuperscript{T} and other members of the genus Sphingopyxis was also evident in the phylogenetic tree (Fig. 1). Strain Gsoil 250\textsuperscript{T} and six closely related Sphingopyxis species (S. macrogolatabida, S. chilensis, S. alaskensis, S. taegonzensis, S. witflariensis and S. terrae) formed a monophyletic clade with a high bootstrap value (97\%), which was supported by the two types of tree-making methods employed in this study.

DNA–DNA hybridization was performed between Gsoil 250\textsuperscript{T} and the type strains of recognized species of the genus Sphingopyxis according to the method of Ezaki et al. (1989), using photobiotin-labelled DNA probes (Sigma)
Table 1. Differential phenotypic characteristics of strain Gsoil 250T (Sphingopyxis ginsengisoli sp. nov.) and recognized Sphingopyxis species

Species: 1, Gsoil 250T (data from this study); 2, S. macrogoltabida (n=6) (Takeuchi et al., 1993, 1995; Kämpfer et al., 1997; Lee et al., 2001); 3, S. alaskensis (n=7) (Vancannet et al., 2001); 4, S. chilensis (n=1) (Godoy et al., 2003); 5, S. taegonis (n=1) (Lee et al., 2001); 6, S. wilflariensis (n=1) (Kämpfer et al., 2002); 7, S. terrae (n=6) (Takeuchi et al., 1993, 1995; Kämpfer et al., 1997; Lee et al., 2001); 8, S. backryangensis (n=1) (Yoon & Oh, 2005); 9, S. flavimaris (Yoon et al., 2005) (n=1). All species are Gram-negative, rod-shaped, non-spore-forming, motile and catalase- and oxidase-positive. All species are negative for utilization of citrate. n, Number of strains; +, positive; −, negative; w, weakly positive; ND, not determined; v, variable reaction. Data in parentheses are for the type strain.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colony colour</td>
<td>Yellow</td>
<td>Whitish-brown or yellow</td>
<td>Yellow to beige</td>
<td>Yellow</td>
<td>Pale-yellow</td>
<td>Yellow</td>
<td>Light or deep-yellow</td>
<td>Orange</td>
<td>Yellow</td>
</tr>
<tr>
<td>Motility</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>v (+)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Reduction of nitrate to nitrite</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Hydrolysis of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aesculin</td>
<td>+</td>
<td>v (+)</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>v (−)</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Gelatin</td>
<td>−</td>
<td>v (−)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Urea</td>
<td>−</td>
<td>−</td>
<td>v (+)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetate</td>
<td>+</td>
<td>(+)</td>
<td>−</td>
<td>−*</td>
<td>−*</td>
<td>−</td>
<td>(−)</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>l-Arabinose</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Cellobiose</td>
<td>+</td>
<td>+</td>
<td>v (−)</td>
<td>+*</td>
<td>+*</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fructose</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>D-Galactose</td>
<td>+</td>
<td>(−)</td>
<td>v (+)</td>
<td>+*</td>
<td>−*</td>
<td>−</td>
<td>(−)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>D-Glucose</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
<td>+*</td>
<td>+</td>
<td>(−)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Malate</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>w</td>
<td>−</td>
</tr>
<tr>
<td>Maltose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Mannose</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Trehalose</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+*</td>
<td>−*</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Xylose</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>w</td>
<td>−*</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Nucleotide signature of 16S rRNA gene:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134†</td>
<td>G</td>
<td>U:G</td>
<td>G</td>
<td>U:G</td>
<td>G</td>
<td>U:G</td>
<td>G</td>
<td>U:G</td>
<td>G</td>
</tr>
<tr>
<td>990:1215*</td>
<td>C18:1ω7c, C16:1ω7c, 2-OH, C16:1ω6c</td>
<td>C18:1ω7c, C16:1ω7c, 2-OH, C16:1ω6c</td>
<td>C18:1ω7c, C17:1ω6c, 2-OH</td>
<td>C18:1ω7c, C18:1ω9t, C16:1ω6c</td>
<td>C18:1ω7c, C18:1ω9t, C16:1ω6c, 2-OH</td>
<td>C18:1ω7c, C17:1ω6c</td>
<td>C18:1ω7c, C18:1ω9t, C16:1ω6c</td>
<td>C18:1ω7c, C17:1ω6c</td>
<td>C18:1ω7c, C17:1ω6c</td>
</tr>
<tr>
<td>Major fatty acids</td>
<td>DNA G+C content (mol%)</td>
<td>69.2</td>
<td>63–65</td>
<td>65</td>
<td>66</td>
<td>63</td>
<td>ND</td>
<td>63–65</td>
<td>63</td>
</tr>
</tbody>
</table>

*Data from this study.
†Escherichia coli 16S rRNA numbering system was used.
and microdilution wells (Greiner). The levels of DNA–DNA relatedness between strain Gsoil 250T and recognized species of the genus *Sphingopyxis* were 9–29% (15% to *S. macrogoltabida* NBRC 15033T, 29% to *S. chilensis* LMG 20986T, 10% to *S. alaskensis* LMG 18877T, 13% to *S. taenonensis* KCTC 2884T and 12% to *S. witflariensis* DSM 14551T, values that are low enough to assign strain Gsoil 250T as representing a novel species of the genus *Sphingopyxis* (Wayne et al., 1987; Stackebrandt & Goebel, 1994).

The DNA G+C content of strain Gsoil 250T was 69.2 mol%. The predominant respiratory lipoquinone type (Q-10) of strain Gsoil 250T was the same as those of recognized species of the genus *Sphingopyxis* (Takeuchi et al., 2001; Kämpfer et al., 2002; Yoon et al., 2005). The fatty acid profile of strain Gsoil 250T was characterized by the occurrence of C_{18:1\alpha7c} (46.4%), summed feature 4 (C_{16:1\alpha7c/iso-C_{15:0} 2-OH; 34.6%}) and C_{16:0} (9.7%) as major fatty acids, and C_{14:0} 2-OH (5.1%) as a 2-hydroxy fatty acid and the absence of 3-hydroxy fatty acids. This cellular fatty acid profile was similar to that of the phylogenetically closest relative *S. macrogoltabida* NBRC 15033T and those of some other members of the genus *Sphingopyxis* (see Supplementary Table S1, available in IJSEM online). The lack of 3-hydroxy fatty acids and the presence of 2-hydroxy myristic acid are characteristics that are also shared by all recognized species of the genus *Sphingopyxis* (Takeuchi et al., 2001; Kämpfer et al., 2002; Godoy et al., 2003; Yoon & Oh, 2005; Yoon et al., 2005). However, some qualitative and quantitative differences in fatty acid content could be observed between strain Gsoil 250T and its phylogenetically close relatives. In particular, strain Gsoil 250T could be differentiated from some other *Sphingopyxis* species by a higher content of C_{18:1\alpha7c}, the absence of C_{18:0} and by a smaller amount of C_{17:1\omega6c}. Significant quantitative variation of the latter fatty acid was reported previously by Kämpfer et al. (2002) and was also observed between different species of the genus *Sphingomonas* (Kämpfer et al., 1997; Asker et al., 2007).

Two-dimensional TLC analysis of polar lipids extracted from strain Gsoil 250T (see Supplementary Fig. S2, available in IJSEM Online) showed that strain Gsoil 250T contained a sphingoglycolipid, clearly suggesting that the bacterium belongs to subgroup 4 of the *Alphaproteobacteria*. The overall polar lipid pattern of strain Gsoil 250T corresponded to those reported for sphingomonads (Busse et al., 1999), in particular, for the genus *Sphingopyxis* (Kämpfer et al., 2002; Yoon & Oh, 2005; Yoon et al., 2005), as it was composed of phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, diphosphatidylglycerol and sphingoglycolipid. Small amounts of phosphatidylmonomethylethanolamine, which has been detected in the majority of members of the genus *Sphingopyxis*, were also present in strain Gsoil 250T. However, strain Gsoil 250T has several significant differences in polar lipid composition from that of its closest relative, *S. macrogoltabida* NBRC 15033T (Busse et al., 1999). In contrast to *S. macrogoltabida*, strain Gsoil 250T produced large amounts of two unknown glycolipids, GL2 and GL3, and of minor amounts of aminolipid AL and unknown lipids L1.
and L2. The unique combination of six unknown polar lipids as well as the proportion of common polar lipids was very useful for differentiation of strain Gsoil 250T from other species of the genus Sphingopyxis (Kämpfer et al., 2002; Yoon & Oh, 2005; Yoon et al., 2005).

All of the characteristics determined for strain Gsoil 250T were in accordance with those of members of the genus Sphingopyxis. However, on the basis of phylogenetic distances from established Sphingopyxis species, low levels of DNA–DNA relatedness, and the combination of unique phenotypic characteristics (Table 1), it is clear that strain Gsoil 250T is not affiliated with any recognized species of the genus Sphingopyxis. Therefore, based on the data presented, strain Gsoil 250T should be placed in the genus Sphingopyxis as representing a novel species, for which the name Sphingopyxis ginsengisoli sp. nov. is proposed.

**Description of Sphingopyxis ginsengisoli sp. nov.**

*Sphingopyxis ginsengisoli* (gin.sen.gi.so’li’. N.L. n. ginsengun ginseng; L. n. *solum* soil; N.L. gen. n. *ginsengisoli* of soil of a ginseng field, the source of the organism).

Cells are Gram-negative, aerobic, positive for catalase and oxidase, and rod-shaped (0.2–0.3 μm × 1.0–1.2 μm in length after 4 days culture on R2A agar). Cells are motile by means of single polar flagella. Colonies grown on R2A agar plates for 4 days are smooth, circular, non-glossy, yellowish in colour and 1–3 mm in diameter. Growth occurs at 4–42 °C and pH 5.0–8.5. Growth occurs in the absence of NaCl and in the presence of 5.0% (w/v) NaCl. Does not grow anaerobically in R2A broth medium supplemented with nitrate. Xylan, chitin, starch, cellulose and DNA are not degraded. Growth occurs on TSA and nutrient agar, but not on MacConkey agar. Substrate utilization, enzyme production and other physiological characteristics are given in Table 1. In addition, the following substrates are utilized for growth: D-lyxose, L-xylene, D-fucose, L-rhamnose, propionate, 3-hydroxybutyrate, valerate, lactate, adipate, suberate, fumarate, succinate, amygdalin, L-alanine, L-asparagine, L-ascorbic acid, L-glutamic acid, L-glutamine, L-histidine, L-isoleucine, L-leucine, L-proline and L-tryptophan. The following substrates are not utilized for growth: L-sorbos, D-arabinose, D-ribose, N-acetylglucosamine, pyruvate, formate, caprate, maleic acid, phenylacetate, benzoate, 3-hydroxybenzoate, 4-hydroxybenzoate, salicin, citrate, malonate, glutarate, tartrate, itaconate, oxalate, D-lactose, melibiose, succrose, raffinose, gluconate, D-adenosine, dulcitol, inositol, D-mannitol, D-sorbitol, xylitol, glycerol, methanol, ethanol, glycogen, inulin, dextran, L-arabinose, L-lysine, L-methionine, L-phenylalanine, L-serine, L-threonine, L-tyrosine and L-valine. H₂S and indole are not produced. Arginine dihydrolase and tryptophan deaminase are produced, but not lysine decarboxylase, ornithine decarboxylase or urease. Predominant respiratory lipoquinone is Q-10. Major fatty acids are C₁₈:1ω7c (46.4%), C₁₆:1ω7cisoC₁₅:0 2-OH (34.6%); 2-hydroxy fatty acid is also present.

Major polar lipids are sphingoglycolipid, phosphatidylglycerol, phosphatidicholine, phosphatidylethanolamine, diphosphatidylglycerol and two unknown glycolipids. The DNA G+C content of the type strain is 69.2 mol%.

The type strain, Gsoil 250T (KCTC 12582T=LMG 23390T), was isolated from soil of a ginseng field in Pocheon province, South Korea.

**Acknowledgements**

This work was supported by the 21C Frontier Microbial Genomics and Applications Center Program, Ministry of Education, Science & Technology, Republic of Korea.

**References**


