A Gram-positive, non-spore-forming, rod-shaped and non-motile bacterium, strain Gsoil 355T, was isolated from soil of a ginseng field in South Korea. In phylogenetic analyses based on 16S rRNA gene sequences, strain Gsoil 355T showed the highest levels of sequence similarity with respect to Solirubrobacter pauli B33D1T (97.4 %), Conexibacter woesei DSM 14684T (94.2 %) and Patulibacter minatonensis KV-614T (91.8 %). The strain possesses menaquinone MK-7(H4) and contains C_{16:0} and C_{18:0}ω9c as the predominant fatty acids. The DNA G+C content is 71.5 mol%. On the basis of genotypic and phenotypic characteristics, strain Gsoil 355T represents a novel species of the genus Solirubrobacter, for which the name Solirubrobacter soli sp. nov. is proposed. The type strain is Gsoil 355T (=KCTC 12628T=LMG 23485T).

Members of the phylum Actinobacteria are widespread in soils throughout the world. The genus Solirubrobacter and the species Solirubrobacter pauli were proposed by Singleton et al. (2003) for a member of the Actinobacteria isolated from a burrow of the earthworm Lumbricus rubellus in an agricultural soil in Georgia, USA (Furlong et al., 2002). A novel strain of this genus, Gsoil 355T, was found in soil from a ginseng field in Daejeon, South Korea.

Strain Gsoil 355T was isolated by direct plating of the serially diluted soil sample onto R2A agar (Difco). Single colonies from these plates were transferred onto new plates and incubated for 5 days at 30 °C. The purified colonies were tentatively identified using partial 16S rRNA gene sequences. Cell morphology and motility were investigated (using a Nikon light microscope at × 1000 magnification) in a 5-day-old culture of Gsoil 355T grown on R2A agar at 30 °C. The Gram reaction was tested using the non-staining method, as described by Buck (1982). Oxidase activity was evaluated via the oxidation of 1 % N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride. Catalase activity was determined by measuring bubble production after the application of 3 % (v/v) hydrogen peroxide solution to well-isolated colonies. Growth at a variety of temperatures (4, 15, 25, 30, 37 and 42 °C) and pH (5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9 and 11) was assessed on R2A agar; the pH was adjusted by using HCl and NaOH. Growth at various salt concentrations was tested by adding 0–10 % NaCl to R2A broth. The API 20NE, API ZYM and API ID 32GN microtest systems (bioMérieux) were used to analyse the physiological and biochemical characteristics, according to the recommendations of the manufacturer.

Isoprenoid quinones were extracted with chloroform/methanol (2:1, v/v), purified by TLC and then analysed by HPLC as described previously (Collins & Jones, 1981; Shin et al., 1996). For analysis of the fatty acid methyl esters, the strain was grown on tryptic soy agar (Difco) for 48 h at 30 °C and then two loops of the well-grown cells were harvested. Fatty acid methyl esters were prepared and identified using the Sherlock Microbial Identification System (MIDI) (Sasser, 1990).

The genomic DNA of strain Gsoil 355T was extracted and purified with Genomic-tip system 100/G (Qiagen). It was then enzymically degraded into nucleosides to determine the DNA G+C content (Tamaoka & Komagata, 1984; Mesbah et al., 1989). DNA–DNA hybridization was performed according to the method developed by Ezaki et al. (1989). Hybridization was conducted using five replications for each sample. The highest and lowest values were
excluded and the DNA relatedness taken from the mean of the remaining three values.

For analysis of the 16S rRNA gene sequence, genomic DNA was extracted and purified with a genomic DNA isolation kit (Core Bio System). The 16S rRNA gene was amplified using the universal bacterial primers 9F and 1512R (Weisburg et al., 1991) and the purified PCR products were sequenced by Genotec (Daejeon, Korea) and then edited (Kim et al., 2005). The 16S rRNA gene sequences of related taxa were obtained from GenBank. Multiple alignments were performed with the CLUSTAL X program (Thompson et al., 1997). Evolutionary distances were calculated using the Kimura two-parameter model (Kimura, 1983). A phylogenetic tree was constructed using the neighbour-joining method (Saitou & Nei, 1987) in the MEGA2 program (Kumar et al., 2001). A bootstrap analysis (based on 1000 replicates) was also performed (Felsenstein, 1985).

Strain Gsoil 355T produced non-pigmented colonies on R2A agar at 30 °C. The strain comprised aerobic, Gram-positive, non-motile, rod-shaped bacteria. The optimal growth temperature was about 30 °C. No growth was observed within 7 days at 37 °C and only weak growth occurred after 14 days at 15 °C. The physiological characteristics are summarized in the species description.

The 16S rRNA gene sequence-based phylogenetic analysis showed (Fig. 1) that strain Gsoil 355T is a member of the family Solirubrobacteraceae (Stackebrandt, 2004, 2005). The highest sequence similarities (97.4, 94.2 and 91.8 %) were found with respect to the type strains of \textit{S. pauli} (Singleton et al., 2003), \textit{Conexibacter wosei} (Monciardini et al., 2003) and \textit{Patulibacter minatonensis} (Takahashi et al., 2006), respectively.

The cellular fatty acid profiles of strain Gsoil 355T and the related \textit{Solirubrobacter}, \textit{Conexibacter} and \textit{Patulibacter} species are shown in Supplementary Table S1 (available in IJSEM Online). The major cellular fatty acids in strain Gsoil 355T included C\textsubscript{16:0} iso (26.7 %) and C\textsubscript{18:1\texttextit{9c}} (18.3 %). Minor amounts of fatty acids C\textsubscript{14:0} (0.7 %), C\textsubscript{14:0} iso (0.6 %), C\textsubscript{15:0} (1.9 %), C\textsubscript{16:0} (2.1 %), C\textsubscript{17:0} (5.3 %), C\textsubscript{18:0} (3.3 %), C\textsubscript{18:1} iso (4.3 %), C\textsubscript{19:0} (4.5 %), C\textsubscript{20:0} (1.1 %), unsaturated fatty acids C\textsubscript{16:1} iso H (3.0 %), C\textsubscript{16:1\texttextit{9c}} (0.9 %), C\textsubscript{17:1\texttextit{9c}} (5.5 %), C\textsubscript{17:1\texttextit{9c}} (4.3 %), C\textsubscript{18:2\texttextit{9c}} (7.3 %) and C\textsubscript{20:4\texttextit{9c}} (0.9 %), summed feature 4 (C\textsubscript{16:1\texttextit{9c}}/C\textsubscript{15:0} is 2-0H; 1.4 %) and summed feature 8 (unknown ECL 18.756/C\textsubscript{19:1\texttextit{9c}}/7.9 %) were also detected. No significant differences were found between the fatty acid profiles of strain Gsoil 355T and \textit{S. pauli} B33D1T (Singleton et al., 2003).

Strain Gsoil 355T contained a menaquinone with seven isoprene units [MK-7(H\textsubscript{4})] as the predominant isoprenoid quinone.

The DNA G+C content of strain Gsoil 355T was 71.5 mol%. The strain exhibited 25.0 % (mean of 22, 29 and 27 %) DNA–DNA relatedness with respect to \textit{S. pauli} ATCC BAA-492T. The level of relatedness was less than 70 %, which is considered to be the threshold for delineating a genomic species (Wayne et al., 1987). In addition, the strain could be readily distinguished from \textit{S. pauli} at the phenotypic level (Table 1). The results of the polyphasic analysis clearly show that strain Gsoil 355T represents a novel species within the genus \textit{Solirubrobacter}, for which the name \textit{Solirubrobacter soli} sp. nov. is proposed.

Description of \textit{Solirubrobacter soli} sp. nov.

\textit{Solirubrobacter soli} (so’li. L. neut. gen. n. soli of soil, the source of the type strain).

Cells are Gram-positive, aerobic, non-motile, non-pigmented rods. Growth occurs on R2A agar at 30 °C. Good growth is observed at 25 and 30 °C. Growth occurs at 0–1.5 % (w/v) NaCl but not at higher salt concentrations. Catalase-positive and weakly oxidase-positive. N-Acetyl-\(\beta\)-glucosaminidase, acylphosphatase, alkaline phosphatase,

| Table 1. Comparison of phenotypic characteristics of strain Gsoil 355T and \textit{S. pauli} ATCC BAA-492T. |
|-------------------|------------------|------------------|
| **Characteristic** | **Gsoil 355T** | **S. pauli ATCC BAA-492T** |
| Cell length (µm) | 1.0–3.0 | 1.4 |
| Colony colour | White | Pink |
| Oxidase activity | w | – |
| Growth at 1% NaCl | + | – |
| Utilization of carbon sources | | |
| Acetate | – | + |
| D-Sorbitol | – | + |
| L-Alanine | – | + |
| DNA G+C content (mol%) | 71.5 | 71.8 |

Data for \textit{S. pauli} ATCC BAA-492T were taken from Singleton et al. (2003). Both strains were Gram-positive, non-motile rods and both were catalase-positive and unable to grow with more than 1.5 % NaCl. Both strains could utilize mannose and sucrose and neither could utilize citrate, 3-hydroxybenzoate, malate or mannitol. +, Positive; −, negative; w, weakly positive.
cystine arylamidase, esterase (C4), esterase (C8), z-glucosidase, b-glucosidase, b-galactosidase, leucine arylamidase and valine arylamidase are produced. Arginine dihydrolase, z-chymotrypsin, x-fucosidase, x-galactosidase, p-glucuronidase, lipase (C14), b-mannosidase, naphthol-AS-BI-phosphohydrolase, trypsin and urease are not produced. Gelatin is hydrolysed. Adipate, gluconate, L-arabinose, L-fucose, D-glucose, D-maltose, D-melibiose, D-ribose, sucrose, myo-inositol, L-proline, N-acetyl-D-glucosamine, salicin and glycogen are utilized as sole carbon sources. 2-Ketogluconate, 3-hydroxybenzoate, 3-hydroxybutyrate, 4-hydroxybenzoate, 5-ketogluconate, acetate, caprate, citrate, itaconate, lactate, L-malate, malonate, phenyl acetate, propionate, suberate, n-valerate, D-mannitol, D-sorbitol, L-alanine and L-histidine are not utilized as sole carbon sources. No reduction of nitrate to nitrite or nitrogen gas occurs. The DNA G+C content is 71.5 mol% (HPLC). The predominant quinone is MK-45 (18.3 %).

The type strain, Gsoil 355T (=KCTC 12628T=LMG 23485T), was isolated from soil from a ginseng field in Daejeon, South Korea.

Acknowledgements

This work was supported by a grant from the Plant Diversity Research Center of the 21st Century Frontier Research Program (code PF06222-00) funded by the Ministry of Science and Technology of the Korean Government and by a BK21 research fellowship from the Korean Ministry of Education and Human Resource Development.

References

