Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L.

Wei-An Lai, Peter Kämpfer, A. B. Arun, Fo-Ting Shen, Birgit Huber, and Chiu-Chung Young

1College of Agriculture and Natural Resources, Department of Soil and Environmental Sciences, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan, Republic of China
2Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen 4500, Germany
3Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, Wien, Austria

A pale-pink strain (CC-FR2-10\(^T\)) from the rhizosphere of the sacred tree Ficus religiosa L. in Taiwan was investigated by using a polyphasic taxonomic approach. The cells were Gram-positive, rod-shaped and non-spore-forming. Phylogenetic analyses using the 16S rRNA gene sequence of the isolate indicated that the organism belongs to the genus Deinococcus, the highest sequence similarities being found with Deinococcus grandis (96.1%), Deinococcus radiodurans (94.3%), Deinococcus radiopugnans (93.2%), Deinococcus indicus (93.0%), Deinococcus proteolyticus (92.5%), Deinococcus murrayi (92.4%) and Deinococcus geothermalis (90.7%). The DNA–DNA relatedness with respect to D. grandis DSM 3963\(^T\) was 17.9%. Chemotaxonomic data revealed that strain CC-FR2-10\(^T\) contains only menaquinone MK-8 as the respiratory quinone, unknown phosphoglycolipids as the predominant polar lipids and 16:1\(^c\) and 17:1\(^c\) as the predominant fatty acids. The biochemical and chemotaxonomic properties demonstrate that strain CC-FR2-10\(^T\) represents a novel species, for which the name Deinococcus ficus sp. nov. is proposed. The type strain is CC-FR2-10\(^T\) (= CCUG 53391\(^T\) = CIP 108832\(^T\)).
Cultural and morphological characteristics were observed on nutrient agar and Degryse agar (Degryse et al., 1978). Flexirubin-like pigments were observed by flooding the plates with 20% (w/v) KOH (Fautz & Reichenbach, 1980). The Gram reaction was tested by using the modified method of Cowan (1974). Motility was tested under a microscope, using cells grown for 3 days in motility-test, semi-solid medium at 30°C using cells grown for 3 days in motility-test, semi-solid medium at 30°C using cells grown for 3 days in motility-test, semi-solid medium at 30°C. The Gram reaction was tested by using the modified method of Cowan (1974). Motility was tested under a microscope, using cells grown for 3 days in motility-test, semi-solid medium at 30°C. Fluorescence was tested after 48 h by means of plating on King’s B agar. The pH range for growth was tested in Degryse medium as described by Ferreira et al. (1997).

Strain CC-FR2-10T was Gram-positive and formed visible (about 2 mm), pale-pink colonies after 48 h at 30°C. No growth was observed at temperatures above 42°C. The colonies were translucent and shiny with entire edges. A pale-pink pigment was produced on nutrient agar: this pigment was non-diffusible, non-fluorescent and did not change upon the addition of 20% KOH. Oxidase activity was tested for by using oxidase reagent (bioMérieux) according to the instructions of the manufacturer. The cells of strain CC-FR2-10T were oxidase-positive, non-motile, non-spore-forming rods. Strain CC-FR2-10T was able to grow well on nutrient agar and Degryse agar. Optimum growth was observed at alkaline pH; the strain could tolerate, and grow at, pH 10.

Physiological characterization and additional biochemical tests were performed to assess the carbon-source utilization pattern, using Biolog GP2 plates, and the hydrolysis of 19 substrates was investigated using the API ZYM system and API 20E according to the methods outlined by the manufacturer (bioMérieux).

UV irradiation was carried out according to the methods outlined by Hirsch et al. (2004), under a 254 nm UV lamp; Escherichia coli served as a control.

The fatty acid pattern of strain CC-FR2-10T was determined using the method described by Kämpfer & Kroppenstedt (1996). The pattern is compared with those of some representative Deinococcus species, all of which contain MK-8 as the major quinone (Embley et al., 1987; Ferreira et al., 1997; Oyaizu et al., 1987; Suresh et al., 2004).

Polar lipids were extracted and analysed by two-dimensional TLC according to Tindall (1990). Like other Deinococcus species (Embley et al., 1987; Suresh et al., 2004; Ferreira et al., 1997), strain CC-FR2-10T displayed a complex polar lipid profile consisting of various unknown glycolipids, phosphoglycolipids and phospholipids and an unknown aminophospholipid; an unknown phosphoglycolipid was the predominant component (Fig. 1).

The 16S rRNA gene was amplified by using a PCR with bacterial universal primers 1F and 9R (Kämpfer et al., 2003; Shen et al., 2005). PCR products were purified from agarose gel using the QIAquick Gel extraction kit (Qiagen). The sequencing primers used were 3F (5'-CCTACGGAGGCAGCACG-3'), corresponding to positions 341–357 of E. coli, 4R (5'-TTACCGGCGCTGCTGAC-3'; positions 533–515) and 5F (5'-AAACCTAAATGATTTACGCGG-3'; positions 907–928) (Brosius et al., 1978; Edwards et al., 1989). Sequence analysis was performed using an ABI PRISM 310 DNA sequencer (Applied Biosystems), sequence assembly was performed using the Wisconsin Package, version 9.1 (GCG) with a Fragment Assembly System program supplied by the National Health Research Institute of Taiwan. The phylogenetic tree was constructed from the distance matrices by using the neighbour-joining method.
Trees were constructed by using neighbour joining (Fig. 2) and maximum parsimony (see Supplementary Fig. S1 available in IJSEM Online). An almost-complete (1453 nt) 16S rRNA gene sequence of CC-FR2-10T (AY941086) was aligned with sequences deposited in GenBank, using CLUSTAL X (Thompson et al., 1997). This showed that strain CC-FR2-10T was phylogenetically most closely related to species of the genus Deinococcus. According to the gene sequence similarity calculations, the most closely related strain was D. grandis DSM 3963T (96.1 %), followed by D. radiodurans DSM 20539T (94.3 %), D. radiodurans ATCC 19172T (93.2 %), D. indicus Wt-1aT (93.0 %), D. proteolyticus DSM 20540T (92.5 %), D. murrayi DSM 11303T (92.4 %) and D. geothermalis DSM 11300T (90.7 %). DNA–DNA hybridization experiments were performed with strain CC-FR2-10T and the type strain of the phylogenetically most closely related Deinococcus species, D. grandis DSM 3963T. The method used was that described by Ziemke et al. (1998), except that, for nick translation, 2 µg DNA was labelled with incubation at 15 °C for 3 h. Strain CC-FR2-10T showed relatively low levels of DNA–DNA hybridization with D. grandis DSM 3963T (17.9 %); reciprocal analysis, 14.1 %), which clearly indicated that CC-FR2-10T represents a distinct species.

Strain CC-FR2-10T utilized several carbon sources and was able to hydrolyse 12 out of 19 compounds in the API ZYM system. The results of biochemical/physiological tests are given in Table 1 and in the species description. MK-8 was the predominant respiratory quinone of CC-FR2-10T, as for other Deinococcus species, and an unknown phosphoglycolipid was the predominant polar lipid. Strain CC-FR2-10T was resistant to UV irradiation (254 nm, 8–10 cm for

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>D. ficus</th>
<th>D. grandis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigmentation</td>
<td>Pale pink</td>
<td>Pink/red</td>
</tr>
<tr>
<td>Utilization as carbon source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-Arabinose</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Lactose</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D-Trehalose</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D-Xylose</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D-Mannose</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D-Melibiose</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>N-Acetyl-D-glucosamine</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D-Sorbitol</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1. Comparison of the phenotypic characteristics of strain CC-FR2-10T and D. grandis DSM 3963T

Carbon source utilization was determined with the Biolog GN2 system. Both organisms were short rods, were able to grow at 40 °C, showed nitrate reduction and were positive for oxidase and hydrolysis of aesculin and gelatin. Both strains showed positive results for the utilization of glucose, sucrose (weak in the case of CC-FR2-10T), fructose and maltose. Both strains produced negative results for the utilization of cellulose and for arginine dihydrolase, urease, indole and H₂S.
On the basis of the results of this polyphasic taxonomic analysis and radiation-resistance studies, it is clear that strain CC-FR2-10\(^T\) represents a novel species of the genus *Deinococcus*, for which the name *Deinococcus ficus* sp. nov. is proposed.

Description of *Deinococcus ficus* sp. nov.

Deinococcus ficus (fi’cus. L. n. *ficus* a fig tree and the name of a botanical genus; L. gen. n. *ficus* of Ficus, referring to the isolation of the type strain from the rhizosphere of *Ficus religiosa* L.).

Cells are Gram-positive, non-motile, non-spore-forming rods. Aerobic, oxidase-positive and show good growth after 48 h on nutrient agar and tryptic soy agar at 37 °C. Colonies on nutrient agar are smooth, pale pinkish, circular, translucent and shiny with entire edges; colonies become mucoid. Pink pigmentation is non-diffusible, non-fluorescent and does not change upon the addition of 20 % KOH. Unable to grow at 5 or 42 °C. Growth occurs at pH 5.5–10. Resistant to UV irradiation (254 nm, 8–10 cm for 10 min). Major cellular fatty acids are 16:1ω7c, 17:0ω8c, 17:0ω9c iso, 16:0, 17:0 iso and 15:0ω6c. MK-8 is the predominant lipoquinone. An unknown phospholipid is the predominant polar lipid. The following compounds are utilized as sole carbon sources (i.e. produce positive results in the Biolog system): dextrin, Tweens 40 and 80, as are many other species ([Brooks & Murray, 1981](#)). Cells contain tetrahydro-2-pyrimidinone, glycolaldehyde, D-glucosamine, N-acetyl-β-D-mannosamine (weakly), L-arabinose, D-fructose, L-fucose, D-galactose, D-galacturonic acid, D-gluconic acid, α-D-glucose, α-D-lactose, maltose, maltotriose, D-mannitol, D-mannose, D-melibiose, methyl α-D-galactoside, methyl β-D-galactoside, methyl β-D-glucoside, D-raffinose, L-rhamnose, D-ribose, D-sorbitol, stachyose, sucrose, D-trehalose, D-xylene, acetic acid, β-hydroxybutyric acid, p-hydroxyphenylacetic acid, L-lactic acid, D-malic acid, L-malic acid, pyruvic acid methyl ester, succinic acid monomethyl ester, propionic acid, pyruvic acid, succinic acid, L-alanine, alanil L-glycine, L-asparagine, L-glutamic acid, glycyl L-glutamic acid, L-serine, putrescine (weakly), glycerol, adenosine, 2-deoxyadenosine, inosine, thymidine, uridine, adenosine 5’-monophosphate, thymidine 5’-monophosphate, uridine 5’-monophosphate, D-fructose 6-phosphate, α-D-glucose 1-phosphate, D-glucose 6-phosphate, DL-α-glycerol phosphate. Positive for β-galactosidase, acceptor production, gelatinase, mannitol oxidation and cytochrome oxidase activity, alkaline phosphatase, butyrate esterase, caprylate esterase, leucine arylamidase, α-chymotrypsin, acid phosphatase, naphthol-AS-BI-phosphohydrolase, β-galactosidase, α-glucosidase, β-glucosidase, α-mannosidase and α-fucosidase.

The type strain, CC-FR2-10\(^T\) (=CCUG 53391\(^T\)=CIP 108832\(^T\)), was isolated from the rhizosphere of *Ficus religiosa* L.

Acknowledgements

We thank Mr W. S. Huang for his excellent technical assistance. We thank Jean Euzéby for his advice regarding the specific epithet. This research work was kindly supported by a grant from the National Science Council and the Council of Agriculture, Executive Yuan, Taiwan, Republic of China.

References

Mattimore, V. & Battista, J. R. (1996). Radioresistance of *Deinococcus radiodurans*: functions necessary to survive ionizing radiation are

