Flavobacterium saliperosum sp. nov., isolated from freshwater lake sediment


State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Zhong-Guan-Cun, Haidian, Beijing 100080, China

An aerobic, yellow-pigmented, Gram-negative bacterium, designated strain S13T, was isolated from freshwater sediment of Taihu Lake in central China. The taxonomy of strain S13T was studied by using phenotypic and phylogenetic methods. Cells of strain S13T were rod-shaped, non-motile and with a size range of 0.35–0.55 × 1.5–2.5 μm. The nearly complete 16S rRNA gene of strain S13T was amplified and sequenced. A BLAST search and phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain S13T was related to members of the genus Flavobacterium, with the highest sequence similarity of 93.8% to Flavobacterium columnare (ATCC 23463T). Cells contained menaquinone-6 (MK-6) as the major respiratory quinone and the genomic DNA G+C content was 41 mol%. The major fatty acids were iso-C₁₅ : 0 (28.2%) and iso-C₁₇ : 0 9c (19.0%). It is proposed that S13T (=CGMCC 1.3801T = JCM 13331T) represents the type strain of a novel species, Flavobacterium saliperosum sp. nov.

An aerobic, yellow-pigmented, Gram-negative bacterium, designated strain S13T, was isolated from freshwater sediment of Taihu Lake in central China. The taxonomy of strain S13T was studied by using phenotypic and phylogenetic methods. Cells of strain S13T were rod-shaped, non-motile and with a size range of 0.35–0.55 × 1.5–2.5 μm. The nearly complete 16S rRNA gene of strain S13T was amplified and sequenced. A BLAST search and phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain S13T was related to members of the genus Flavobacterium, with the highest sequence similarity of 93.8% to Flavobacterium columnare (ATCC 23463T). Cells contained menaquinone-6 (MK-6) as the major respiratory quinone and the genomic DNA G+C content was 41 mol%. The major fatty acids were iso-C₁₅ : 0 (28.2%) and iso-C₁₇ : 0 9c (19.0%). It is proposed that S13T (=CGMCC 1.3801T = JCM 13331T) represents the type strain of a novel species, Flavobacterium saliperosum sp. nov.

An aerobic, yellow-pigmented, Gram-negative bacterium, designated strain S13T, was isolated from freshwater sediment of Taihu Lake in central China. The taxonomy of strain S13T was studied by using phenotypic and phylogenetic methods. Cells of strain S13T were rod-shaped, non-motile and with a size range of 0.35–0.55 × 1.5–2.5 μm. The nearly complete 16S rRNA gene of strain S13T was amplified and sequenced. A BLAST search and phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain S13T was related to members of the genus Flavobacterium, with the highest sequence similarity of 93.8% to Flavobacterium columnare (ATCC 23463T). Cells contained menaquinone-6 (MK-6) as the major respiratory quinone and the genomic DNA G+C content was 41 mol%. The major fatty acids were iso-C₁₅ : 0 (28.2%) and iso-C₁₇ : 0 9c (19.0%). It is proposed that S13T (=CGMCC 1.3801T = JCM 13331T) represents the type strain of a novel species, Flavobacterium saliperosum sp. nov.

An aerobic, yellow-pigmented, Gram-negative bacterium, designated strain S13T, was isolated from freshwater sediment of Taihu Lake in central China. The taxonomy of strain S13T was studied by using phenotypic and phylogenetic methods. Cells of strain S13T were rod-shaped, non-motile and with a size range of 0.35–0.55 × 1.5–2.5 μm. The nearly complete 16S rRNA gene of strain S13T was amplified and sequenced. A BLAST search and phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain S13T was related to members of the genus Flavobacterium, with the highest sequence similarity of 93.8% to Flavobacterium columnare (ATCC 23463T). Cells contained menaquinone-6 (MK-6) as the major respiratory quinone and the genomic DNA G+C content was 41 mol%. The major fatty acids were iso-C₁₅ : 0 (28.2%) and iso-C₁₇ : 0 9c (19.0%). It is proposed that S13T (=CGMCC 1.3801T = JCM 13331T) represents the type strain of a novel species, Flavobacterium saliperosum sp. nov.

An aerobic, yellow-pigmented, Gram-negative bacterium, designated strain S13T, was isolated from freshwater sediment of Taihu Lake in central China. The taxonomy of strain S13T was studied by using phenotypic and phylogenetic methods. Cells of strain S13T were rod-shaped, non-motile and with a size range of 0.35–0.55 × 1.5–2.5 μm. The nearly complete 16S rRNA gene of strain S13T was amplified and sequenced. A BLAST search and phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain S13T was related to members of the genus Flavobacterium, with the highest sequence similarity of 93.8% to Flavobacterium columnare (ATCC 23463T). Cells contained menaquinone-6 (MK-6) as the major respiratory quinone and the genomic DNA G+C content was 41 mol%. The major fatty acids were iso-C₁₅ : 0 (28.2%) and iso-C₁₇ : 0 9c (19.0%). It is proposed that S13T (=CGMCC 1.3801T = JCM 13331T) represents the type strain of a novel species, Flavobacterium saliperosum sp. nov.

An aerobic, yellow-pigmented, Gram-negative bacterium, designated strain S13T, was isolated from freshwater sediment of Taihu Lake in central China. The taxonomy of strain S13T was studied by using phenotypic and phylogenetic methods. Cells of strain S13T were rod-shaped, non-motile and with a size range of 0.35–0.55 × 1.5–2.5 μm. The nearly complete 16S rRNA gene of strain S13T was amplified and sequenced. A BLAST search and phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain S13T was related to members of the genus Flavobacterium, with the highest sequence similarity of 93.8% to Flavobacterium columnare (ATCC 23463T). Cells contained menaquinone-6 (MK-6) as the major respiratory quinone and the genomic DNA G+C content was 41 mol%. The major fatty acids were iso-C₁₅ : 0 (28.2%) and iso-C₁₇ : 0 9c (19.0%). It is proposed that S13T (=CGMCC 1.3801T = JCM 13331T) represents the type strain of a novel species, Flavobacterium saliperosum sp. nov.

An aerobic, yellow-pigmented, Gram-negative bacterium, designated strain S13T, was isolated from freshwater sediment of Taihu Lake in central China. The taxonomy of strain S13T was studied by using phenotypic and phylogenetic methods. Cells of strain S13T were rod-shaped, non-motile and with a size range of 0.35–0.55 × 1.5–2.5 μm. The nearly complete 16S rRNA gene of strain S13T was amplified and sequenced. A BLAST search and phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain S13T was related to members of the genus Flavobacterium, with the highest sequence similarity of 93.8% to Flavobacterium columnare (ATCC 23463T). Cells contained menaquinone-6 (MK-6) as the major respiratory quinone and the genomic DNA G+C content was 41 mol%. The major fatty acids were iso-C₁₅ : 0 (28.2%) and iso-C₁₇ : 0 9c (19.0%). It is proposed that S13T (=CGMCC 1.3801T = JCM 13331T) represents the type strain of a novel species, Flavobacterium saliperosum sp. nov.

An aerobic, yellow-pigmented, Gram-negative bacterium, designated strain S13T, was isolated from freshwater sediment of Taihu Lake in central China. The taxonomy of strain S13T was studied by using phenotypic and phylogenetic methods. Cells of strain S13T were rod-shaped, non-motile and with a size range of 0.35–0.55 × 1.5–2.5 μm. The nearly complete 16S rRNA gene of strain S13T was amplified and sequenced. A BLAST search and phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain S13T was related to members of the genus Flavobacterium, with the highest sequence similarity of 93.8% to Flavobacterium columnare (ATCC 23463T). Cells contained menaquinone-6 (MK-6) as the major respiratory quinone and the genomic DNA G+C content was 41 mol%. The major fatty acids were iso-C₁₅ : 0 (28.2%) and iso-C₁₇ : 0 9c (19.0%). It is proposed that S13T (=CGMCC 1.3801T = JCM 13331T) represents the type strain of a novel species, Flavobacterium saliperosum sp. nov.

An aerobic, yellow-pigmented, Gram-negative bacterium, designated strain S13T, was isolated from freshwater sediment of Taihu Lake in central China. The taxonomy of strain S13T was studied by using phenotypic and phylogenetic methods. Cells of strain S13T were rod-shaped, non-motile and with a size range of 0.35–0.55 × 1.5–2.5 μm. The nearly complete 16S rRNA gene of strain S13T was amplified and sequenced. A BLAST search and phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain S13T was related to members of the genus Flavobacterium, with the highest sequence similarity of 93.8% to Flavobacterium columnare (ATCC 23463T). Cells contained menaquinone-6 (MK-6) as the major respiratory quinone and the genomic DNA G+C content was 41 mol%. The major fatty acids were iso-C₁₅ : 0 (28.2%) and iso-C₁₇ : 0 9c (19.0%). It is proposed that S13T (=CGMCC 1.3801T = JCM 13331T) represents the type strain of a novel species, Flavobacterium saliperosum sp. nov.
phylogenetic analysis and for biochemical and physiological characterization.

Routine cultivation was conducted at 25 °C with modified M1 medium (ATCC) or Shieh medium (Song et al., 1988). Gram reactions were determined according to the method described by Gerhardt et al. (1994). Cell flagellation and morphology were examined by transmission and scanning electron microscopy. Chitin hydrolysis was tested as described by Hsu & Lockwood (1975). Hydrolysis of CM-cellulose (0–5%, w/v), gelatin (0–5%, w/v), casein (50% skimmed milk, v/v), agar (1·5%, w/v), alginate (0·5%, w/v), pectin (0·5%, w/v), aesculin (0·5%, w/v), starch (0·5%, w/v), L-tyrosine (0·5%, w/v), Tween 80 (1%, v/v) and egg yolk (5%, w/v) was tested using the standard mineral base of Stanier et al. (1966). After the mineral base was autoclaved, each compound was added. Growth was examined after incubation at 25 °C for 1, 3, 7 and 14 days. Catalase and oxidase activities, Voges–Proskauer reaction, brown diffusible pigment on L-tyrosine agar and production of H2S were also investigated according to the methods of Dong & Cai (2001). Aerobic and anaerobic production of acids (OF reaction) from carbohydrates was determined in OF basal medium (Hugh & Leifson, 1953). Carbohydrate solution sterilized by filtration was added at final concentration of 1% (w/v), and acid production was recorded after 7 and 14 days incubation.

Flexirubin-type pigments were detected by using 20% KOH (Fautz & Reichenbach, 1980) and extracellular glycans were identified with the Congo red absorption test (McCammom & Bowman, 2000). Growth temperature was determined with a TN3F temperature-gradient incubator (Advance). Growth on seawater agar, nutrient agar and trypticase soy agar was tested at 25 °C after 14 days growth. The presence of gliding motility was determined as described by Zhu et al. (2003). Salt tolerance was tested in M1 medium supplemented with 0–2% NaCl (spun at 100 r.p.m., 25 °C) incubated for 3 days. Duplicate antibiotic-sensitivity tests were performed using filter-paper discs (ø3–25–ø75 mm) containing each of the following: ceftazidime (30 mg), ceftriaxone (30 mg), tobramycin (10 mg), trimethoprim/sulfamethoxazole (1·25–23·75 μg); penicillin (10 IU), erythromycin (15 μg), tetracycline (30 μg), gentamicin (10 μg), chloramphenicol (30 μg), azithromycin (15 μg), kanamycin (30 μg), streptomycin (10 μg) and rifampicin (5 μg). Discs were placed on M1 medium plates spread with S13 T culture and were then incubated at 25 °C for 18–24 h.

Cells of strain S13 T were Gram-negative and aerobic, with a size range of 0·35–0·55 × 1·5–2·5 μm. Flagella were not observed. Colonies were yellow, smooth, circular and 2–4 mm in diameter. Growth was observed after a temperature range of 20–34 °C and a pH range of 6·5–8·5. Gelatin and casein were hydrolysed but starch, CM-cellulose, agar, alginate, aesculin, chitin and pectin were not. A detailed description of assimilation of sugars, sensitivity to antibiotics, etc., is provided in the species description. Growth occurred without adding NaCl to the medium and was severely inhibited in the presence of more

![Fig. 1. Phylogenetic tree constructed with the neighbour-joining method according to 16S rRNA gene sequences of strain S13 T and species of the genus Flavobacterium. Numbers at nodes indicate percentages of bootstrap support based on 1000 resampled datasets. Cytophaga marinoflava (ATCC 19326 T) was used as outgroup. GenBank accession numbers are given in parentheses. Bar, evolutionary distance (K_nuc) of 0·05.](Image)
than 1% NaCl; the optimal concentration of NaCl for growth was 0-1% in medium. Differential phenotypic characteristics of strain S13T and related Flavobacterium species are detailed in Table 1.

Biomass for chemotaxonomic analysis was harvested from modified M1 medium cultures at 25°C for 24 h. Strain S13T was further characterized for its cellular fatty acid profile. Cellular fatty acids were extracted and analysed by the Sherlock system (Midi) following the manufacturer’s instructions. The most abundant cellular fatty acids of strain S13T were iso-C15:0 (28-2%), iso-C17:19c (19-0%), iso-C17:0 3-OH (8-6%) and iso-C15:1G (6-7%). The cellular fatty acid profile of strain S13T is given in the species description. Menaquinones were extracted and purified according to the method of Collins (1985) and were analysed by HPLC (Wu et al., 1989), with the MK-6 from Salegentibacter holothuriorum (NBRC 100249T) used as a reference. S. holothuriorum NBRC 100249T was cultivated in liquid Zobell 2216E medium (150 r.p.m., 25°C) for 36 h. Strain S13T was shown to have MK-6 as the major respiratory quinone. DNA base composition was determined by thermal denaturation (Marmur & Doty, 1962) using DNA from Escherichia coli K-12 as a control. The DNA

G+C content of strain S13T was 41 mol%, which is higher than that of other Flavobacterium species (32-37 mol%).

The nearly complete 16S rRNA gene of strain S13T (1400 bp) was amplified and sequenced as described by Zhang et al. (2003). Alignments of 16S rRNA gene sequences were performed with the CLUSTAL_X program, version 1.64b (Thompson et al., 1997). A phylogenetic tree (Fig. 1) was constructed by the neighbour-joining method (Saitou & Nei, 1987) with Kimura’s two-parameter calculation model (Kimura, 1980). 16S rRNA gene sequence analysis indicated that strain S13T was phylogenetically related to members of the genus Flavobacterium, with similarity ranging from 89:1 to 93:8%. Strain S13T had highest 16S rRNA gene sequence similarity to Flavobacterium columnare (93:8%) and to Flavobacterium aquatile (93:3%). The phylogenetic tree indicated that strain S13T clustered with F. columnare, and that this cluster was further grouped with the remaining recognized species of the genus Flavobacterium with strong support (100%). Based on this phylogenetic analysis and the phenotypic properties, we concluded that strain S13T represents a novel, aquatic species within the genus Flavobacterium. Because it is sensitive to NaCl (1% NaCl completely halted growth), we propose the name Flavobacterium saliperosum sp. nov.

Table 1. Phenotypic characteristics that differentiate Flavobacterium saliperosum sp. nov. from related Flavobacterium species

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth on:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seawater agar</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Nutrient agar</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Trypticase soy agar</td>
<td>(+)</td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Gliding motility</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td></td>
<td>−</td>
</tr>
<tr>
<td>Flexirubin pigments</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td></td>
<td>−</td>
</tr>
<tr>
<td>Congo red absorption</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td></td>
<td>−</td>
</tr>
<tr>
<td>Acid from carbohydrates</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td></td>
<td>−</td>
</tr>
<tr>
<td>Degradation of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gelatin</td>
<td>+</td>
<td>+</td>
<td>v</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Starch</td>
<td>−</td>
<td>−</td>
<td>v</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Aesculin</td>
<td>−</td>
<td>−</td>
<td>v</td>
<td>−</td>
<td></td>
<td>−</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>+</td>
<td>−</td>
<td>v</td>
<td>+</td>
<td></td>
<td>−</td>
</tr>
<tr>
<td>Brown pigment on tyrosine agar</td>
<td>+</td>
<td>v</td>
<td>−</td>
<td>−</td>
<td></td>
<td>−</td>
</tr>
<tr>
<td>Precipitation on egg-yolk medium</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td></td>
<td>−</td>
</tr>
<tr>
<td>H2S production</td>
<td>−</td>
<td>−</td>
<td>v</td>
<td>−</td>
<td></td>
<td>−</td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>v</td>
<td>v</td>
<td>−</td>
<td>+</td>
<td></td>
<td>−</td>
</tr>
<tr>
<td>Production of cytochrome oxidase</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

Table 1 continued

http://ijs.sgmjournals.org

Description of Flavobacterium saliperosum sp. nov.

Flavobacterium saliperosum (sal, i, per, o’sum. L. n. sal, salis salt; L. adj. perosum detesting, hating greatly; N.L. neut. adj. saliperosum salt-hating).

Gram-negative, aerobic and heterotrophic, with cell size of 0-35-0-55 x 1-5-2:5 μm. Non-flagellated and non-gliding. Colonies are yellow, smooth and circular with entire margins. Grows at temperatures of 20-34°C (optimum growth at 28°C). Grows over pH range 6-5-8:5 (optimum growth at pH 7-5). A concentration of NaCl above 1% severely inhibits growth (optimum growth is at 0-1% NaCl in medium). Grows on nutrient agar and trypticase soy agar but not on seawater agar. Voges-Proskauer reaction and oxidase are negative but catalase and lipase are positive. Cells contain flexirubin pigments. Does not reduce nitrate or sulfate. Forms a precipitate on egg-yolk agar and produces brown pigment on tyrosine agar. Hydrolyses L-tyrosine, gelatin and casein, but not agar, alginate, aesculin, starch, CM-cellulose, chitin or pectin. Does not produce acid from the following sugars: lactose, arabinose, rhamnose, raffinose, ribose, galactose, melibiose, D-melezitose, sucrose, xylose, mannose, fucose, fructose, glucose, cellobiose, maltose, salicin, laetrile, mannitol or sorbitol. Filter-paper disc tests indicate resistance to cetazidime, ceftriaxone, tobramycin and trimethoprim/sulfamethoxazole, but susceptibility to penicillin, erythromycin, tetracycline, gentamicin, chloramphenicol, azithromycin, kanamycin, streptomycin and rifampicin. Cells contain menaquinone-6 (MK-6). Cellular fatty acids are iso-C15:0 (28-2%), iso-C17:19c (19-0%), iso-C17:0 3-OH (8-6%), iso-C16:0 (6-9%), iso-C15:1G

http://ijs.sgmjournals.org

Downloaded from www.microbiologyresearch.org by
IP: 54.70.40.11
On: Tue, 23 Jul 2019 15:11:27
(6.7%), iso-C15:0 3-OH (5.0%), C15:0 (4.6%), anteiso-C15:0 (3.9%), C16:107c (2.6%), iso-C16:0 H (2.3%), iso-C16:0 3-OH (2.0%), iso-C14:0 (1.3%), C17:0 2-OH (1.0%), iso-C15:0 2-0H (0.9%), iso-C13:0 (0.5%), C15:1ω6c (0.42%) and C17:1ω6c (0.3%). DNA G+C content is 41 mol%.

The type strain, S13T (=CGMCC 1.3801T = JCM 13331T), was isolated from freshwater lake sediment.

References


