Pediococcus stilesii sp. nov., isolated from maize grains

Charles M. A. P. Franz,¹ Marc Vancanneyt,² Katrien Vandemeulebroecke,² Marjan De Wachter,² Ilse Cleenwerck,² Bart Hoste,² Ulrich Schilling,¹ Wilhelm H. Holzapfel¹ and Jean Swings²

¹Federal Research Centre for Nutrition and Food, Institute for Hygiene and Toxicology, Haid-und-Neu-Strasse 9, D-76131 Karlsruhe, Germany
²BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium

The genus *Pediococcus* consists of seven species at the time of writing, *Pediococcus acidilactici*, *P. clauseni*, *P. damnosus*, *P. dextrinus*, *P. inopinatus*, *P. parvulus* and *P. pentosaceus*. The former *Pediococcus urinaeaequi* has recently been reclassified as *Aerococcus urinaeaequi* on the basis of 16S rRNA gene sequencing and DNA–DNA hybridizations (Fels et al., 2005). Based on the phylogeny, *P. dextrinus* is distantly related to the other pediococci (Dobson et al., 2002) and is also phenotypically distinguished from other *Pediococcus* species by the combination of the production of D- and L-lactic acid from glucose. 16S rRNA gene sequence analysis revealed that the organism belongs to the genus *Pediococcus*, with *Pediococcus pentosaceus* and *Pediococcus acidilactici* as nearest neighbours. Genotypic fingerprinting, whole-cell protein electrophoresis, DNA–DNA hybridizations and physiological and biochemical tests allowed differentiation of strain LMG 23082T from other established *Pediococcus* species. A remarkable feature was that, unlike other pediococci, this bacterium was capable of growth at pH 9·0. The strain studied represents a novel species for which the name *Pediococcus stilesii* sp. nov. is proposed with the type strain LMG 23082T (= BFE 1652T = FAIR-E 180T = CCUG 51290T), the only currently known isolate of the species.

Strain LMG 23082T (= BFE 1652T = FAIR-E 180T) was isolated in 1997 in Lagos, Nigeria, from white maize grains, steeped for 3 days. Isolation and purification conditions were MRS agar (de Man et al., 1960) at 30 °C under aerobic conditions. Analogous cultivation conditions were used for further experiments, unless indicated otherwise.

Cell morphology was determined using phase-contrast microscopy. Cells of strain LMG 23082T were cocci, with a cell diameter of 1·2 μm. Cells occurred singly, in pairs or tetrads, the latter being typical for pediococci as a result of dividing alternately in two perpendicular directions (Simpson & Taguchi, 1995).

The phylogenetic position of strain LMG 23082T was determined by complete 16S rRNA gene sequence analysis as described by Vancanneyt et al. (2004) with the following modifications: PCR-amplified 16S rDNA was purified by using a NucleoFast 96 PCR Clean-up kit (Macherey-Nagel). Sequencing reactions were purified using a Montage SEQ96 Sequencing Reaction Clean-up kit (Millipore). Sample preparation was assisted using a Tecan Genesis Workstation 200 (Tecan). Electrophoresis of sequence reaction products was performed by using an ABI Prism 3100 Genetic Analyzer (Applied Biosystems). The 16S rRNA gene sequence (a continuous stretch of 1529 bp) and sequences of other pediococci, as well as *Lactobacillus* species belonging to the *Lactobacillus/Pediococcus* phylogenetic group which were retrieved from EMBL, were aligned and a phylogenetic tree was constructed by the neighbour-joining method using the BioNumerics software package,
version 3.50 (Applied Maths). Unknown bases were discarded for the analyses. Bootstrapping analysis was undertaken to test the statistical reliability of the topology of the neighbour-joining tree using 500 bootstrap resamplings of the data (Fig. 1). Comparison of the sequence of strain LMG 23082T with deposited sequences available in the EMBL database revealed highest similarities with \textit{P. pentosaceus} and \textit{P. acidilactici} (sequence similarities of 98.2 and 97.5\%, respectively). Within the genus \textit{Pediococcus}, the latter two taxa and \textit{P. clauseni} occupy a distinct branch.

Strains of all recognized \textit{Pediococcus} species were screened using SDS-PAGE of whole-cell proteins. Whole-cell protein extracts were prepared and SDS-PAGE was performed as described by Pot \textit{et al.} (1994). Densitometric analysis, normalization and interpolation of protein profiles, and a numerical analysis were performed by using the GelCompar software package, versions 3.1 and 4.0, respectively (Applied Maths). Groupings of the rep-PCR fingerprints of lactic acid bacteria at the BCCM/LMG Bacteria Collection. For numerical analysis, data between the 75- and 500-bp bands of the internal standard were used. Similarity was calculated using the Dice coefficient and clustering was done using the UPGMA algorithm. The FAFLP fingerprints of all strains were compared with reference profiles of lactic acid bacteria taxa as currently available in the database. FAFLP analysis revealed a separate branch for strain LMG 23082T (Fig. 3).

As a further genotypic approach, rep-PCR was conducted using the primer (GTG)\textsubscript{5} (5’-GTGGTGGTGGTGTTGTG-3’) following the method described by Gevers \textit{et al.} (2001) for lactic acid bacteria. Total genomic DNA was isolated from the type strains of all recognized \textit{Pediococcus} species according to the method of Pitcher \textit{et al.} (1989), as modified by Björkroth & Korkeala (1996), relying on a combined lysozyme and mutanolysin treatment. DNA was amplified in 50 \textmu{l} volumes containing 100 ng template DNA, 1 \times \textit{Taq} DNA polymerase buffer (Amersham Pharmacia), 200 \muM dNTPs, 50 pM primer, 4 \% DMSO (Sigma) and 1·5 U \textit{Taq} DNA polymerase (Amersham Pharmacia). PCR products were separated by electrophoresis and images were visualized and analysed as described by Kostinek \textit{et al.} (2005) using the BioNumerics (version 2.5) software (Applied Maths). Groupings of the rep-PCR fingerprints were performed by using the Pearson product-moment correlation coefficient (\(r\)) and the UPGMA clustering algorithm (Sneath & Sokal, 1973). Using rep-PCR, LMG 23082T was clearly distinguished from the other type strains and had the closest, although not significant, match with \textit{P. inopinatus} at a correlation level of \(r=0.61\) (Fig. 4). It is not known whether the (GTG)\textsubscript{5} sequence, which is highly repetitive on the chromosome of \textit{Escherichia coli} (Versalovic \textit{et al.}, 1994) is indeed present and, if so, how often it would be present in the genomes of pediococci. Nevertheless, even if we assume that it is not, the resolution of the method would resemble a RAPD-PCR-type genotyping method. Therefore, in our study, as in the study of
from the thermal melting temperature (LMG 23082T was 38°C) recommended 70% cut-off value that indicates separate strain of P. pentosaceus with the type strain of P. pentosaceus (Wayne et al., 1987). The DNA base composition (G+C content) was determined from culture supernatants after 48 h of growth using an enzyme test kit (Roche Diagnostics). Maximum pH and NaCl tolerance were determined in MRS broth (Merck) after aerobic incubation for 5 days at 37°C. The API 50 CHL identification system (bioMérieux) was used to determine the carbohydrate fermentation profile. Biochemical tests results are summarized in Table 1 and given in the species description below. LMG 23082T is distinguished from P. pentosaceus by its inability to produce acid from arabinose and lactose, from P. acidilactici by its inability to ferment xylose, and from P. clausenii by its ability to produce acid from galactose and DL-lactate from glucose (Table 1). Acid production from ribose distinguishes LMG 23082T from P. damnosus, P. inopinatus and P. parvulus. Unlike other pediococci, LMG 23082T grew at pH 9.0 (Table 1) and even at pH 9.6 (result not shown), a phenotypic characteristic which is commonly used to distinguish pediococci, lactococci and streptococci from enterococci (Weiss, 1991; Hardie & Whiley, 1997). The physiological and ecological significance of this alkaliphilic trait is not known, especially when considering that only one strain was isolated, which makes interpretations of such properties difficult. The maximum NaCl concentration for growth after 5 days of incubation was 8%, a value which is higher than those reported for P. clausenii (5%), P. damnosus (5%) and P. dexterinus (6%), but lower than

Phenotypic characterization was performed according to Schillinger & Lücke (1987). D(-)- and L(+)-lactate were determined from culture supernatants after 48 h of growth

Fig. 2. Protein profiles and corresponding dendrogram, derived from UPGMA linkage of correlation coefficients (r, expressed as a percentage value for convenience), of P. stilesii and other representative pediococci.

Fig. 3. FAFLP patterns and corresponding dendrogram, derived from UPGMA linkage of Dice coefficients (expressed as a percentage value for convenience), of P. stilesii and other representative pediococci.
those for *P. pentosaceus* (10%) and *P. acidilactici* (10%) (Simpson & Taguchi, 1995; Holzapfel et al., 2005).

All results obtained in the present study allowed us to assign strain LMG 23082^T to a novel species, for which we propose the name *Pediococcus stilesii* sp. nov.

Description of *Pediococcus stilesii* sp. nov.

Pediococcus stilesii (stile eller. N.L. gen. n. *stilesii* named in honour of Prof. emerit. Michael E. Stiles, a food microbiologist who specialized in food preservation with bacteriocinogenic lactic acid bacteria).

Table 1. Phenotypic differentiating features of *Pediococcus* species

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth at:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH 4.5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pH 7.0</td>
<td>+</td>
<td>+</td>
<td>+*</td>
<td>−</td>
<td>+</td>
<td>d</td>
<td>d</td>
<td>+</td>
</tr>
<tr>
<td>pH 8.0</td>
<td>+</td>
<td>+</td>
<td>+*</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>pH 9.0</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>35 °C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>40 °C</td>
<td>+</td>
<td>d</td>
<td>+*</td>
<td>−</td>
<td>+</td>
<td>d</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>45 °C</td>
<td>+</td>
<td>d</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>48 °C</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Maximum NaCl concentration for growth</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Lactic acid configuration</td>
<td>DL</td>
<td>DL</td>
<td>L(+)</td>
<td>DL</td>
<td>L(+)</td>
<td>DL</td>
<td>DL</td>
<td>DL</td>
</tr>
<tr>
<td>Acid from:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arabinose</td>
<td>d</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Galactose</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>d</td>
<td>d</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lactose</td>
<td>d</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>d</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Melitose</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>d</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Maltose</td>
<td>−</td>
<td>+</td>
<td>d</td>
<td>d</td>
<td>+</td>
<td>d</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ribose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Xylose</td>
<td>+</td>
<td>d</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>G + C content of DNA (mol%)</td>
<td>42</td>
<td>38</td>
<td>40-5</td>
<td>38-5</td>
<td>40-41</td>
<td>39-5</td>
<td>41</td>
<td>38-0</td>
</tr>
</tbody>
</table>

Data observed for the type strain only.

Cells are cocci, 0.6-1.2 μm in diameter. They are Gram-positive, non-motile, do not form spores and occur singly, in pairs or in tetrads. Colonies are white, smooth and circular with a convex elevation and an entire margin. Acid is produced from glucose, ribose, galactose, fructose, mannose, N-acetylg glucosamine, amygdalin, arbutin, aesculin, salicin, cellobiose, maltose, gentiobiose and tagatose. Acid is not produced from glycerol, erythritol, D-arabinose, L-arabinose, D-xylose, L-xylose, adonitol, methyl β-D-xylopyranoside, sorbose, rhamnose, dulcitol, inositol, mannitol, sorbitol, methyl α-D-mannopyranoside, methyl α-D-glucopyranoside, lactose, melibiose, sucrose, trehalose, inulin, melezitose, raffinose, starch, glycogen, xylitol,
turidine, lyxose, D-fucose, L-fucose, D-arabitol, L-arabitol, potassium gluconate, potassium 2-ketogluconate or potassium 5-ketogluconate. The G+C content of the DNA is 38·0 mol%.

The type strain is LMG 23082T (=BFE 1652T=FAIR-E 180T=CCUG 51290T), isolated from white maize grains.

Acknowledgements

This research was supported by the Prime Minister’s Services – Federal Office for Scientific, Technical and Cultural Affairs, Belgium. The authors would like to thank Ingrid Specht and Dirk Vogel for excellent technical assistance.

References

