Methyllobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78° N)

Ingvild Wartiainen,1 Anne Grethe Hestnes,1 Ian R. McDonald2 and Mette M. Svenning1

1Department of Biology, Faculty of Science, University of Tromsø, N-9037 Tromsø, Norway
2Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, New Zealand

A Gram-negative, rod-shaped, non-motile, non-spore forming bacterium (SV96T) was isolated from wetland soil near Ny-Ålesund, Svalbard. On the basis of 16S rRNA gene sequence similarity, strain SV96T was shown to belong to the Gammaproteobacteria, related to Methyllobacter psychrophilus Z-0021T (99·1 %), Methyllobacter luteus ATCC 49878T (97·3 %), Methyllobacter marinus A45T (97·0 %) and Methyllobacter whittenburyi ATCC 51738T (95·8 %); the closest related species within the genus Methylomicrobium with a validly published name was Methylomicrobium album ATCC 33003T (95·0 %). Chemotaxonomic data (including the major fatty acids: 16:1ω8, 16:1ω7 and 16:1ω5t) supported the affiliation of strain SV96T to the genus Methyllobacter. The results of DNA–DNA hybridization, physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain SV96T from the four Methyllobacter species mentioned above. Strain SV96T therefore represents a novel species, for which the name Methyllobacter tundripaludum sp. nov. is proposed (type strain SV96T = DSM 17260T = ATCC BAA-1195T).

The genus Methyllobacter was formed following the emendation of the description of the genus Methyloccus (Bowman et al., 1993), and Methyllobacter species are equivalent to the similarly named group first coined by Whittenbury et al. (1970). The genus was further revised when three members of the genus Methyllobacter were renamed as a new taxon Methylomicrobium (Bowman et al., 1995). At present the genus comprises the four species Methyllobacter luteus (Bowman et al., 1993; Romanovskaya et al., 1978), Methyllobacter whittenburyi (Bowman et al., 1993; Romanovskaya et al., 1978; Whittenbury et al., 1970), Methyllobacter marinus (Bowman et al., 1993; Lidstrom, 1988) and Methyllobacter psychrophilus (Omelchenko et al., 1996; Tourova et al., 1999).

Strain SV96T was isolated from a soil core collected from a wetland near the settlement Ny-Ålesund (78° 56′ N 11° 53′ E), Svalbard, in July 1996. The soil emitted methane (Høj et al., 2005) and had a pH of 6·4. The temperature of the soil was 10 °C at the surface and 5 °C at 10 cm below the surface; the permafrost level was at 25 cm. After the fresh vegetation layer was removed, the upper 10 cm of the soil core was mixed, 2 g soil was taken and added to 10 ml nitrate mineral salt medium (NMS) (Whittenbury et al., 1970) at pH 6·8, and shaken for 10 min at 200 r.p.m. After 10 min of sedimentation, 1 ml supernatant was mixed with 9 ml NMS in a 120 ml serum bottle (Alltech). The bottle was sealed with a rubber stopper and crimp cap. Twenty millilitres of air was replaced with 20 ml CH4/CO2 (95:5) mixture (both gases were 99·95 % purity). The bottle was incubated at 20 °C and subcultured every 2–3 weeks (1 ml culture to 9 ml fresh NMS medium). After four or five subculturing steps in liquid media, bacteria were plated on NMS medium containing 1·5 % noble agar (bacteriological agar type E; Biokar diagnostics). The plates were incubated at 20 °C in sealed chambers containing approximately 35 % methane in air. Colonies were picked and restreaked. Heterotrophic contamination was checked by streaking colonies on agar plates with rich medium containing 0·5 % tryptone, 0·25 % yeast extract, 0·1 % glucose and 2·0 % agar. These plates were incubated at room temperature without additional methane. The cultures were considered to be pure when only one cell type was observed under light microscopy and no growth on nutrient rich medium was observed. Exospor
The growth of SV96T was measured at temperatures ranging from 0 to 40 °C, using a temperature gradient apparatus with the opportunity to grow bacteria simultaneously at 10 different chosen temperatures. The temperature gradient was achieved using a metal cylinder with a flat top (14 cm in diameter and 50 cm in length), where one end was attached to a cooling water bath and the other to a thermostat-regulated heat block. The top of the cylinder had 10 holes, 5 cm apart in two parallel rows, which fitted a 27 ml serum bottle (Alltech). The temperatures were measured at every second hole, where a small hole was drilled between the two parallel rows. To achieve temperatures from 5 to 40 °C, two different experiments with partly overlapping temperatures were run. The temperature was first set from 5 to 12 °C (a gradient of 0.14 °C cm⁻¹) and then from 11 to 40 °C (a gradient of 0.58 °C cm⁻¹). Cultures of SV96T were prepared by adding 5 ml starting culture to 27 ml serum bottles. The bottles were sealed with rubber stoppers and crimp caps before 5 ml air was replaced with 5 ml CH₄/CO₂ (95:5) mixture and the cultures were grown for 5 days. The OD₆₀₀ was measured for the starting and 5-day-old cultures using a Spectramax 250 microplate spectrophotometer system (Molecular Devices). The maximum OD₆₀₀ of SV96T was 0.72, and was measured after 15 days at 20 °C. The experiment was repeated in three replicates at each temperature setting and the net growth calculated by subtracting the OD₆₀₀ of the starting culture from the OD₆₀₀ values of the 5-day-old cultures. Mean values for net growth and standard deviations were calculated.

The 16S rRNA gene was analysed as described previously (Lane, 1991). Phylogenetic analysis was performed using the software packages PHYLIP (Felsenstein, 1993) and TREEVIEW (Page, 1996) after multiple alignment of data by CLUSTAL_X (Thompson et al., 1994) and clustering by neighbour-joining methods were performed using the software package ARB (Ludwig et al., 2004) (Fig. 1). The nifH gene was amplified and sequenced as described previously (Poly et al., 2001). Sequence similarity searches in GenBank indicated that the closest related nifH sequence was derived from an uncultured N₂-fixing bacteria (AY196439) (92 %); the

Fig. 1. Phylogenetic relationship of the 16S rRNA gene sequences of *Methylobacter tundripaludum* SV96T and other strains of *Methylobacter* and related genera. The dendrogram shows the results of a neighbour-joining analysis in which DNADIST was used. Bootstrap values greater than 50 % derived from 100 replicates are also shown. The bar represents 1 % sequence divergence, as determined by measuring the lengths of the horizontal lines connecting any two species.

Fig. 2. Phylogenetic relationship of the deduced PmoA sequences of *Methylobacter tundripaludum* SV96T and other strains of *Methylobacter* and related genera. The dendrogram shows the results of an analysis in which PROTDIST was used. Bootstrap values greater than 50 % derived from 100 replicates are also shown. The bar represents 10 % sequence divergence, as outlined in Fig. 1.
closest matches with cultured bacteria were *Methylobacter marinus* A45T (84 %) and *Methylobacter luteus* NCIMB 11914T (=ATCC 49878T) (84 %). The DNA base composition was determined by thermal denaturation using a Cary 4E Varian spectrophotometer at a heating rate of 0–5 °C min$^{-1}$. The G+C content (mol%) of the DNA was calculated by the equation of Mandel *et al.* (1970). DNA–DNA hybridization was performed with *Methylobacter luteus* ATCC 49878T according to the method described by Ezaki *et al.* (1989). It was not performed with *Methylobacter psychrophilus* Z-0021T or *Methylobacter marinus* A45T because they were, to our knowledge, both unavailable from any culture collection.

The most closely related bacterium, *Methylobacter psychrophilus* Z-0021T (Tourova *et al.*, 1999), sharing 99-1 % 16S rRNA gene similarity, was isolated from a moss-vegetated area on the tundra in the polar Ural (Omelchenko *et al.*, 1993). Despite the high 16S rRNA gene sequence similarity and the similar origin, the bacterial strains were different in several important morphological traits (Table 1). SV96T was non-motile, 0–8–1·3 μm wide and 1·9–2·5 μm in length. Cells often appeared in pairs or in long chains. Colonies were pale-pink pigmented, but lost the pigmentation upon methane starvation. Cells of *Methylobacter psychrophilus* Z-0021T were reported to be cocci or diplococci, 1·0–1·7 μm in diameter, and colonies were opaque cream (Omelchenko *et al.*, 1996). The cells of SV96T lysed in 2 % SDS. The strain did not grow when NaCl was added to solid NMS medium and poor to no growth was observed with methanol as a carbon source. SV96T grew at all pH values tested except for pH 9–0 and no exospores or cysts were revealed using the described methods. A type I membrane structure, with bundles of disc-shaped membranes, was confirmed using transmission electron microscopy (Fig. 3). The major phospholipid fatty acids (PLFAs) for SV96T were 16:1ω8 (34·9 %), 16:1ω7 (23·4 %) and 16:1ω5δ (26·3 %). Isolate SV96T had a G+C content of 47 mol% (±1 mol%), while *Methylobacter psychrophilus* Z-0021T had a G+C content of 45·6 mol% (Omelchenko *et al.*, 1996). SV96T was positive for the *nifH* gene by PCR (Poly *et al.*, 2001). It was negative for the *mmoX* gene in PCR assays (Fuse *et al.*, 1998; Miguez *et al.*, 1997) and no soluble methane monoxygenase (sMMO) was detected by colorimetric assay performed as described by Brusseau *et al.* (1990), with the modifications of Graham *et al.* (1992). SV96T had an optimum growth temperature of 23 °C, but grew well at temperatures from 10 to 27 °C (Fig. 4) and was clearly not psychrophilic. *Methylobacter psychrophilus* Z-0021T was reported to have a growth optimum between 3·5 and 10 °C with no growth at temperatures above 20 °C (Omelchenko *et al.*, 1996). To confirm that SV96T and *Methylobacter psychrophilus* Z-0021T represent different species, a DNA–DNA hybridization should be performed; however, *Methylobacter psychrophilus* Z-0021T is not available from any culture collection (P. Kämpfer, personal communication). This is also the situation for *Methylobacter marinus* A45T. The 16S rRNA gene sequence similarity

Table 1. Characteristics that differentiate species belonging to the genus *Methylobacter*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell morphology</td>
<td>+</td>
<td>+</td>
<td>d</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ellipsoidal</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Rods</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cocccobacilli</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cyst formation</td>
<td>–</td>
<td>–</td>
<td>(?)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Motility</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pigmentation*</td>
<td>P</td>
<td>W/B</td>
<td>Y</td>
<td>DB</td>
<td>DB</td>
</tr>
<tr>
<td>Optimum growth temperature (°C)</td>
<td>23</td>
<td>3·5–10</td>
<td>30</td>
<td>37</td>
<td>30</td>
</tr>
<tr>
<td>NaCl requirement</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Oxidase</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Urease</td>
<td>–</td>
<td>ND</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>nifH gene</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>G+C content (mol%)</td>
<td>47</td>
<td>45·6</td>
<td>49–51</td>
<td>54–55</td>
<td>49–54</td>
</tr>
<tr>
<td>Major PLFA(s)</td>
<td>16:1ω8, 16:1ω7</td>
<td>16:1ω7</td>
<td>16:1ω7c</td>
<td>16:1ω7c</td>
<td>16:1ω7c</td>
</tr>
</tbody>
</table>

DB, Diffusible brown; P, pink; W/B, white or buff; Y, yellow.
Between SV96T and the second most closely related bacterium, *Methylobacter luteus* ATCC 49878T, was 97 %. DNA–DNA hybridization demonstrated a relatedness value of 10 % between SV96T and *Methylobacter luteus* ATCC 49878T. The differences between *Methylobacter luteus* ATCC 49878T, *Methylobacter psychrophilus* Z-0021T, *Methylobacter marinus* A45T, *Methylobacter whittenburyi* ATCC 51738T and SV96T are described in Table 1. Because of the genotypic and phenotypic differences between SV96T and the other *Methylobacter* species (including 16S rRNA gene sequence and DNA–DNA hybridization), we propose the name *Methylobacter tundripaludum* sp. nov. for strain SV96T.

Description of *Methylobacter tundripaludum* sp. nov.

Methylobacter tundripaludum (tun. dri. pa’lu. dum. N.L. n. tundra treeless polar region with permanently frozen subsoil; L. n. palus -udis marsh; N.L. gen. pl. n. tundripaludum of the tundra marshes).

Gram-negative, straight, fat, rod-shaped cells. Cells are 0.8–1.3 \(\mu\)m in diameter and 1.9–2.5 \(\mu\)m long. Cells are pale-pink pigmented, occur singly, in pairs or in long chains, and are non-motile. Grows on methane as sole carbon and energy source; shows poor to no growth on methanol. Possesses a type I intracytoplasmic membrane system. Assimilates carbon via the ribulose monophosphate (RuMP) pathway and does not possess sMMO. Cells are catalase- and oxidase-positive. Possesses a *nifH* gene. Optimal growth occurs at 23 °C, but grows well down to 10 °C; no growth occurs above 30 °C. Does not require NaCl for growth and cells are lysed by 2 % SDS. Grows well from pH 5 to 7.9. Major PLFAs are 16:1\(\omega\)8 (34.9 %), 16:1\(\omega\)7 (23.4 %) and 16:1\(\omega\)5t (26.3 %). The DNA G+C content is 47 mol%. *Methylobacter tundripaludum* strain SV96T shows 10 % DNA–DNA hybridization with *Methylobacter luteus* ATCC 49878T.

The type strain is SV96T (=ATCC BAA-1195T = DSM 17260T), isolated from an Arctic wetland soil near Ny-Ålesund, Svalbard.

Acknowledgements

We thank Frida Lise Daae (Institute of Biology, University of Bergen, Norway) for determination of G+C content and Espen Hansen (Department of Biology, University of Tromsø, Norway) for the fatty acid analyses, the Norwegian Research Council for financial support (grant 121458/720), the Norwegian Polar Institute for economic support of fieldwork and UNIS (the University Courses on Svalbard) for access to laboratory facilities. We also thank Professor Peter Kämpfer for helpful discussion.

References

