Two thermophilic, spore-forming strains, TM1T and TM5, were isolated from deep-sea sediment (4000 m below sea level) of the Ayu Trough in the western Pacific Ocean. Cells of the two strains were Gram-positive, motile and rod-shaped. Their spores were ellipsoidal, subterminal to terminal and occurred in swollen sporangia. The two strains grew at temperatures up to 65 °C and in the pH range 6.5–9.0. The NaCl concentration for optimal growth was 3.0 % (w/v) and growth was inhibited by 5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains TM1T and TM5 belonged to the genus \textit{Bacillus}, and that strain TM1T was most closely related to \textit{Bacillus aeolius} DSM 15084T (96.7%), \textit{Bacillus smithii} DSM 4216T (96.1%), \textit{Bacillus methanolicus} NCIMB 13113T (95.8%) and \textit{Bacillus pallidus} DSM 3670T (95.7%). Between the 16S rRNA gene sequences of strains TM1T and TM5 there were only three nucleotide differences, implying that the two strains were of the same species. The cellular fatty acid profiles of the two strains were also very similar, with iso-C\textsubscript{15:0}, iso-C\textsubscript{16:0}, C\textsubscript{16:0}, iso-C\textsubscript{17:0} and anteiso-C\textsubscript{17:0} as the major components. The G+C content of strain TM1T was 38.7 %. On the basis of phenotypic and molecular data, strains TM1T and TM5 represent a novel species of the genus \textit{Bacillus}, for which the name \textit{Bacillus alveayuensis} sp. nov. is proposed. The type strain is TM1T (=KCTC 10634T =JCM 12523T).
growth pH, the distilled water in MB was replaced by the following buffers (Sigma) at a concentration of 20 mM: for pH 4, 5 and 5·5, MES; for pH 6 and 6·5, PIPES; for pH 7 and 7·5, HEPES; for pH 8, 9 and 10, AMPSO. The requirement of NaCl was tested using modified MB (per litre distilled water: 5 g bactopeptone, 1 g yeast extract, 0·01 g FePO$_4$.4H$_2$O) supplemented with different concentrations of NaCl. Turbidity was monitored automatically by a temperature-gradient incubator (TVS126MA; Advantec) and the optimal temperature, pH and salinity were determined by calculating the growth rate in the exponential phase. Hydrolysis of casein, starch and tributyryrin was tested as described by Marteinsson et al. (1996) and Scholz et al. (1987). To confirm anaerobic growth, cells were inoculated into MB medium in a serum vial capped with an aluminium seal and cultivated at 55 °C for 7 days.

Genomic DNA was extracted from 1 ml aliquots of cells of TM1T and TM5 cultured in MB medium by using the Wizard genomic DNA purification kit (Promega). The 16S rRNA gene was amplified by PCR and purified as described by Sohn et al. (2004). The PCR products were sequenced by using a BigDye terminator cycle sequencing kit (Applied Biosystems) and an ABI PRISM 3100 Genetic Analyser (Applied Biosystems). The nearly complete (1500 nt) 16S rRNA gene sequences of the strains were used for phylogenetic analysis. Alignment gaps and unidentified base positions were not taken into consideration for the analysis. The 16S rRNA gene sequences of strains TM1T and TM5 were compared with those in the GenBank database by using the BLAST algorithm (Altschul et al., 1990). Related sequences and the novel sequences were aligned by using CLUSTAL-X (Thompson et al., 1997), and the alignment was refined using PHYDIT (Chun, 1995) and manual comparison considering the secondary structures. The phylogenetic analysis was performed by using the computer packages PHYLIP (Felsenstein, 1993) and PAUP* 4.0 (Swofford, 1998). Phylogenetic trees were inferred using the Fitch–Margoliash (Fitch & Margoliash, 1967), maximum-likelihood (Felsenstein, 1993), maximum-parsimony (Fitch, 1972) and neighbour-joining algorithms (Saitou & Nei, 1987). Distance matrices for the neighbour-joining and Fitch–Margoliash methods were generated according to the model of Jukes & Cantor (1969). The robustness of the topology in the phylogenetic trees was evaluated by bootstrap analyses (Felsenstein, 1985) of the neighbour-joining method based on 1000 resamplings.

Total lipids were extracted from cells that had been incubated at 55 °C for 1 day by using the method of Folch et al. (1957). For analysis of the fatty acid composition, total lipids were converted to fatty acid methyl esters (FAMEs) by serial addition of 1·5 % NaOH and 5 % HCl in methanol; both reactions were repeated at 65 °C for 20 min. FAMEs were analysed as described by Sohn et al. (2004). The G+C content (mol%) of strain TM1T was determined by using the melting temperature method as described by Mandel et al. (1970) and Marmur & Doty (1962). The melting temperature of purified chromosomal DNA extracted from Escherichia coli K-12 (KCTC 2443) was also determined, to serve as a control.

Strains TM1T and TM5 had similar characteristics with respect to their cellular and colonial morphologies. Cells of both strains were Gram-positive, motile, rod-shaped (0·5–1·0 μm wide and 2·5–5 · 2 μm long) and occurred singularly or in chains. They produced ellipsoidal endospores that lay in terminal or subterminal positions and usually caused the sporangia to swell. Colonies that formed after 1 day incubation on marine agar 2216 (Difco) at 55 °C were circular, opaque, cream and convex with entire margins. They did not grow under anaerobic conditions. Both strains grew between 40 and 65 °C, with optimum growth at 55 °C. The strains grew in the pH range 6·5–9·0; the optimal growth pH was between pH 7·0 and 7·5. The NaCl concentration range for growth of strains TM1T and TM5 was 0–4·0 % (w/v), with the optimal concentration at 3·0 and 2·0 % (w/v), respectively. From tests done using the API 20NE system (bioMérieux), both strains gave positive results for aesculin hydrolysis (β-glucosidase), acid production from glucose and assimilation of glucose, mannose and maltose, and negative results for oxidase, gelatin hydrolysis, reduction of nitrate to nitrite, reduction of nitrates to nitrogen, indole production, arginine dihydrolase, urease, β-galactosidase, utilization of citrate and assimilation of arabinose, mannitol, N-acetylg glucosamine, gluconate, caprate, adipate, malate, citrate and phenyl acetate. From tests done using the API 50CHB system (bioMérieux), acid production by both strains was positive for D-fructose, D-glucose, D-mannose, D-trehalose, maltose, sucrose, aesculin, 5-ketogluconate and glycerol, and negative for other substrates tested. Neither strain hydrolysed starch or tributyryrin, but casein was hydrolysed by both strains. Physiological characteristics useful for differentiating between strains TM1T and TM5 and related thermophilic Bacillus species are summarized in Table 1.

The 16S rRNA gene sequences of strains TM1T and TM5 were continuous stretches of 1532 and 1530 nt, respectively. The level of 16S rRNA gene sequence similarity between the two strains was 99·8 %; hence, both strains should be assigned to a single taxon (Fig. 1). Based on 16S rRNA gene sequence similarity data, it was found that the closest relatives of strain TM1T were Bacillus aeolius DSM 15084T (96·7 %), B. smithii DSM 4216T (96·1 %), Bacillus methanolicus NCIMB 13113T (95·8 %) and Bacillus pallidus DSM 3670T (95·7 %). Sequence similarity of strain TM1T with other Bacillus species with validly published names was less than 97 %. There are widely accepted criteria for delineating species in current bacteriology: these state that strains with DNA relatedness values of less than 70 % or with more than 3 % difference in their 16S rRNA gene sequences are considered to represent different species (Wayne et al., 1987).

The cellular fatty acids of strains TM1T and TM5 ranged
from C\textsubscript{12} to C\textsubscript{18} and included saturated, monoenoic and iso-branched components. In both strains, iso-C\textsubscript{15:0}, isoo-C\textsubscript{16:0}, C\textsubscript{16:0}, iso-C\textsubscript{17:0} and anteiso-C\textsubscript{17:0} were the major fatty acids. A comparison of cellular fatty acid compositions of strains TM1T and TM5 and related thermophilic Bacillus species is given in a Supplementary Table in IJSEM Online.

The DNA G+C content of strain TM1T was 38.7 mol\%. On the basis of the above-mentioned phenotypic and genetic characteristics of strains TM1T and TM5, we consider the two strains to be distinct from other Bacillus species and propose that they are assigned to a novel species, Bacillus alveayuensis sp. nov.

Table 1. Physiological characteristics of strains TM1T and TM5 that differentiate them from related thermophilic Bacillus type strains

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3*</th>
<th>4†</th>
<th>5‡</th>
<th>6§</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth at:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>65 °C</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>25 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH 8-0</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Growth in the presence of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 % NaCl</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 % NaCl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalase</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Oxidase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrolysis of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aesculin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>ND</td>
</tr>
<tr>
<td>Casein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributyrin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Utilization of citrate</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaerobic growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Acid from:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Fructose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>D-Galactose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>D-Mannose</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>d</td>
<td>ND</td>
</tr>
<tr>
<td>D-Ribose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Trehalose</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>D-Xylose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>Cellobiose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maltose</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Rhamnose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>ND</td>
</tr>
<tr>
<td>Raffinose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>Sucrose</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Glycogen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycerol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mannitol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorbitol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Ketogluconate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>38.7</td>
<td>ND</td>
<td>40.8</td>
<td>38.2-41.7</td>
<td>48-50</td>
<td>39-41</td>
</tr>
</tbody>
</table>

*Data from Gugliandolo et al. (2003).
†Data from Nakamura et al. (1988).
‡Data from Arfman et al. (1992).
§Data from Scholz et al. (1987).
Description of *Bacillus alveayuensis* sp. nov.

Bacillus alveayuensis [al.ve.a.yu.en’sis. L. n. *alveus* trough; N.L. masc. adj. *ayuensis* pertaining to Ayu (as a locality); N.L. masc. adj. *alveayuensis* pertaining to the Ayu Trough in the Pacific Ocean].

Cells are Gram-positive, rod-shaped (0.5–1.0 μm wide and 2.5–5.0 μm long), motile and occur singularly or in chains. They produce ellipsoidal endospores that lie in terminal or subterminal positions and usually cause the sporangia to swell. Colonies that form after 1 day incubation on marine agar 2216 at 55°C are circular, opaque and cream. Obligate aerobe. Grows optimally at 55°C, pH 7.0–7.5 and 3.0% NaCl. Does not grow in marine broth 2216 below 40°C or higher than 65°C and 4.0% NaCl. Data on the utilization of carbon sources and on the hydrolysis of chromogenic substrates are shown in Table 1. The major fatty acids are 13-methyl tetradecanoic acid (iso-C₁₅:0), 15-methyl hexadecanoic acid (iso-C₁₇:0) and 14-methyl hexadecanoic acid (anteiso-C₁₇:0).

The type strain (TM₁ᵀ = KCTC 10634ᵀ = JCM 12523ᵀ) and a reference strain (TM₅) were isolated from deep-sea sediment of the Ayu Trough (4000 m below sea level) in the western Pacific Ocean. The DNA G+C content of the type strain is 38.7 mol%.

Acknowledgements

We thank the chief scientist of the DAE-YANG cruise (2001), Dr S. M. Lee, and the captain and crew of the RV ONRURI. We also thank Dr H. J. Seo, K. K. Kwon, J. H. Kang and Y. J. Kim for technical assistance, and give special thanks to Professor Dr H. G. Trüper for help with the Latin nomenclature. This work was supported by the 21C Frontier Microbial Genomics and Applications Center Program, Ministry of Sciences & Technology (Grant MG 02-0101-001-1-0-0), the Marine Novel Bioactive Development Program, Ministry of Marine Affairs and Fisheries, and the in-house project (PE87200) of KORDI, Republic of Korea.
Bacillus alveayensis sp. nov., a thermophile

References

Bacillus thermoaerophilus

approach using the bootstrap.

Microbiol

marine

Bacillus

46

oxidizing, Gram-positive, spore-forming bacterium. Int J Syst

27

http://ijs.sgmjournals.org 1215

Scheltgen, E. (1970). Correlation of melting temperature and

Iceland. In

Microbiology of Extreme Environments and its Potential for

Thermophilic organisms in submarine freshwater hot springs in

Aneurinibacillus

A polyphasic reassessment of the genus

Bacillus aeolius

Gugliandolo, C., Maugeri, T. L., Caccamo, D. & Stackebrandt, E.

Fitch, W. M. (1972). Toward defining the course of evolution:

for the isolation and purification of total lipids from animal tissues.

Fugilandolo, C., Maugeri, T. L., Caccamo, D. & Stackebrandt, E.
(2003). Bacillus aeolius sp. nov. a novel thermophilic, halophilic
marine Bacillus species from Eolian Islands (Italy). Syst Appl
Microbiol 26, 172–176.

A polyphasic reassessment of the genus Aneurinibacillus, reclassification
of Bacillus thermoeurophilus (Meier-Stauffer et al. 1996) as
Aneurinibacillus thermoeurophilus comb. nov., and emended
descriptions of A. aneurinilyticus corr., and A. migulanus, and A. thermo-

Thermophilic organisms in submarine freshwater hot springs in
Iceland. In Microbiology of Extreme Environments and its Potential
for Biotechnology, pp. 109–112. Edited by M. S. Da Costa, J. C. Duarte &

In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by

Mandel, M., Igambi, L., Bergendahl, J., Dodson, M. L., Jr &
Scheltinga, E. (1987). Correlation of melting temperature and
cesium chloride buoyant density of bacterial deoxyribonucleic acid.

deoxyribonucleic acid from its thermal denaturation temperature.
J Mol Biol 5, 109–118.

Martinevsson, V. Th., Birrien, J.-L., Kistjánsson, J. K. & Prieur, D.
(1995). First isolation of thermophilic non-sporulating heterotrophic
bacteria from deep-sea hydrothermal vents. FEMS Microbiol Ecol 18,
163–174.

Numerical taxonomic study of thermophilic Bacillus isolated from
three geographically separated deep-sea hydrothermal vents. FEMS
Microbiol Ecol 21, 255–266.

study of Bacillus coagulans Hammer 1915 with a proposal for Bacillus
smithii sp. nov. Int J Syst Bacteriol 38, 63–73.

Nazina, T. N., Tourova, T. P., Poltaraus, A. B. & 8 other authors
(2001). Taxonomic study of aerobic thermophilic bacilli: descriptions
of Geo Bacillus subterrean us gen. nov., sp. nov. and Geo Bacillus
uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus
stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoo-

vorsans, Bacillus kaustophilus, Bacillus thermoglucosidasius and
Bacillus thermodenitrificans to Geo Bacillus as the new combinations
G. stearothermophilus, G. thermocatenulatus, G. thermoo-
vorsans, G. kaustophilus, G. thermoglucosidasius and G. ther-

diversity of thermophilic members of the genus Bacillus as revealed
by 16S rDNA analysis. FEMS Microbiol Lett 115, 205–211.

pallidus sp. nov., a new thermophilic species from sewage. Syst Appl
Microbiol 9, 91–96.

thermophilic bacilli. In Thermophilic Bacteria, pp. 19–50. Edited by

Sneath, P. H. A. (1986). Endospore-forming Gram-positive rods and
1207. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G.

Novosphingobium pentaromativorans sp. nov., a high-molecular-mass
polyyclic aromatic hydrocarbon-degrading bacterium isolated from

mony (*and other methods), version 4.0. Sunderland, MA: Sinauer
Associates.

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. &
strategies for multiple sequence alignment aided by quality analysis

Touzel, J. P., O’Donohue, M., Debeire, P., Samain, E. & Breton, C.
(2000). Thermobacillus xylanolyticus gen. nov., sp. nov., a new aerobic
thermophilic xylan-degrading bacterium isolated from farm soil. Int J Syst

International Committee on Systematic Bacteriology. Report of the
ad hoc committee on reconciliation of approaches to bacterial

Wisotzkey, J. D., Jurshuk, P., Jr, Fox, G. E., Deinhard, G. & Poralla, K.
(1992). Comparative sequence analyses on the 16S rRNA (rDNA) of
Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cyclohep-
tanicus and proposal for creation of a new genus, Alicyclobacillus