Hahella ganghwensis sp. nov., isolated from tidal flat sediment

Keun Sik Baik,1 Chi Nam Seong,1 Eun Mi Kim,1,2 Hana Yi,3 Kyung Sook Bae4 and Jongsik Chun3

1Department of Biology, College of Natural Sciences, Sunchon National University, Sunchon 540-742, Republic of Korea
2Department of Dental Hygiene, Kwangyang Health College, Kwangyang 545-703, Republic of Korea
3School of Biological Sciences, Seoul National University, 56-1 Shillim-dong, Kwanak-gu, Seoul 151-742, Republic of Korea
4Laboratory of Insect Resources, Korea Research Institute of Bioscience and Biotechnology, Yusung PO Box 115, Taean 305-600, Republic of Korea

A marine bacterial strain, designated FR1050T, was isolated from a sediment sample of getbol (Korean tidal flat). Phylogenetic investigations based on 16S rRNA gene sequence analysis showed that the isolate formed a robust monophyletic clade with Hahella chejuensis within the γ-Proteobacteria. Sequence similarity between strain FR1050T and the type strain of Hahella chejuensis was 94.7%. Cells were Gram-negative, aerobic, rod-shaped, motile and halophilic; optimum growth occurred at sea salt concentrations of 4–6%. The major fatty acids were C_{18:1}ω9c (39.0%) and C_{16:1}ω0 (18–1%). The DNA G+C content was 44 mol%. The polyphasic data obtained showed that strain FR1050T is affiliated to the genus Hahella but represents a novel species for which the name Hahella ganghwensis sp. nov. is proposed. The type strain is FR1050^T (=KCTC 12277^T=JCM 12486^T).

The genus Hahella was proposed by Lee et al. (2001) to accommodate a red-pigmented marine bacterial strain that formed a distinct phyletic line within the γ-Proteobacteria with low (<90%) 16S rRNA gene sequence similarity to other recognized bacterial species. The only species of the genus, Hahella chejuensis, was isolated from a marine sediment sample from Korea (Marado, Cheju) and produced abundant extracellular polysaccharides. During the course of a study on marine microbial diversity, a Hahella-like strain, designated FR1050^T, was isolated from a Korean sediment sample and was the subject of a taxonomic investigation. Based on its polyphasic properties, strain FR1050^T is considered to represent a novel species, for which the name Hahella ganghwensis sp. nov. is proposed.

A marine sediment sample was collected from the getbol (Korean tidal flat) of Ganghwa Island, Korea (37° 35' 31.9" N 126° 27' 24.5" E). The sample was diluted with sterilized artificial sea water (ASW; Lyman & Fleming, 1940), spread onto a plate that contained marine agar 2216 (MA; Difco) and incubated at 25 °C for 3 weeks. The isolate was routinely cultured on MA and maintained as a glycerol suspension (20%, w/v) at −80 °C. H. chejuensis KCTC 2396^T cultured on MA at 30 °C was used as a reference strain.

16S rRNA gene sequence analysis of strain FR1050^T was performed using universal primers (Lane, 1991) as described by Chun & Goodfellow (1995), and an almost complete sequence was obtained (1454 bp). Phylogenetic analyses were performed using the Fitch–Margoliash (Fitch & Margoliash, 1967), maximum-likelihood (Felsenstein, 1993), maximum-parsimony (Fitch, 1971) and neighbour-joining (Saitou & Nei, 1987) methods. Evolutionary distance matrices were generated according to Jukes & Cantor (1969). The resulting neighbour-joining tree topology was evaluated by bootstrap analyses (Felsenstein, 1985) based on 1000 resamplings. Alignment and phylogenetic analyses were carried out using the jPHYDIT program (available at http://chunlab.snu.ac.kr/jphydit/) and PAUP 4.0 (Swoford, 1998) as described by Chun et al. (2000). Preliminary sequence comparison against the 16S rRNA gene sequences held in GenBank indicated that the getbol isolate belonged to the γ-Proteobacteria. The resultant sequence was then aligned manually based on 16S rRNA gene sequence secondary structure (Gutell, 1994) with representative sequences of the γ-Proteobacteria obtained from GenBank. Only unambiguously aligned nucleotide positions (1381 bp)
were used to construct phylogenetic trees. On the basis of 16S rRNA gene sequence similarity values, the closest relatives were *H. chejuensis* KCTC 2396^T* (94.7 %), *Zooshikella ganghwensis* JC2044^T* (90.1 %) and *Microbulbifer hydrolyticus* DSM 11525^T* (90.7 %). No other recognized bacterial species showed more than 90 % 16S rRNA gene sequence similarity. This close relationship between strain FR1050^T* and *H. chejuensis* KCTC 2396^T* was also evident in the phylogenetic trees (Fig. 1). Strain FR1050^T* and *H. chejuensis* formed a monophyletic clade with 100 % bootstrap support and this grouping was recovered in all the phylogenetic trees employed in this study. *Z. ganghwensis* JC2044^T* was recovered as a sister group to the *Hahella* clade containing strain FR1050^T* in the neighbour-joining, Fitch–Margoliash and maximum-likelihood trees. However, the branching patterns of the other genera varied depending on the tree-building methods employed and were supported by relatively low bootstrap values. It is evident from phylogenetic analysis that strain FR1050^T* is affiliated to the genus *Hahella* with a novel species status.

For phenotypic tests, strain FR1050^T* and *H. chejuensis* KCTC 2396^T* were grown on MA at 30 °C. Cellular morphologies were observed by differential interference microscopy (Nikon) and scanning electron microscopy (JEOL) using cells grown at 25 °C for 3 days. Motility was examined using wet mounts. The pH range (3–12) for growth was determined using MA. The requirement for NaCl (0–10 %) and sea salts (0–11 %, Sigma) for growth was tested using synthetic ZoBell medium (ZoBell, 1941; 15 g Bacto agar, 5 g Bacto peptone, 1 g yeast extract, 0.1 g ferric citrate in 1000 ml distilled water). Sea salts were not added to the synthetic medium when the growth range for NaCl concentration was tested. The gelbol isolate was halophilic, requiring media containing 1–10 % (w/v) artificial sea salts for growth (optimum 4–6 %), and was unable to grow on ZoBell medium containing 0–10 % (w/v) NaCl alone. Growth at various temperatures was examined on MA at 4–50 °C. Growth under anaerobic conditions was checked in an anaerobic chamber (1 % CO₂, 10 % H₂, 80 % N₂; Sheldon Manufacturing) using anaerobically prepared MA, tryptasec soy agar (Difco; supplemented with 1 % sea salts) and nutrient agar (Difco; supplemented with 1 % sea salts). Biochemical tests were performed using the API 20NE, API 20E and API ZYM kits (bioMérieux). Strips were inoculated with a heavy bacterial suspension in ASW or AUX medium (bioMérieux) supplemented with 2 % sea salts. Catalase and oxidase activities were determined using 3 % (v/v) hydrogen peroxide and Kovacs reagent (Kovacs, 1956), respectively. Results from these biochemical and physiological tests are given in the species description and in Table 1. In contrast to the result given by Lee et al. (2001), the type strain of *H. chejuensis*, together with strain FR1050^T*, showed no growth under anaerobic conditions when the media were prepared anaerobically. The reported anaerobic growth of *H. chejuensis* may have resulted from residual oxygen in the media tested by Lee et al. (2001). Based on the result obtained here, an emended description for the genus *Hahella* is given below.

Cellular fatty acids of strain FR1050^T* and *H. chejuensis* KCTC 2396^T* were analysed as methyl esters by GLC according to the instructions of the Microbial Identification System (MIDI). Fatty acid methyl esters were prepared from biomass grown on MA at 30 °C for 2 days. The DNA G + C content was determined by thermal denaturation as described by Mandel & Marmur (1968). The DNA G + C ratio of strain FR1050^T* was 44 mol% and the cellular fatty acid profile is given in Table 2. Although the culture conditions for growth of strain FR1050^T* and *H. chejuensis* KCTC 2396^T* were identical, their fatty acid compositions were very different, especially for C₁₈:₇(C₈:₀)7 and C₁₇:₀ 10-methyl and a mixture of iso-C₁₆:₀ 2OH and/or C₁₆:₁ ω7c. Our phylogenetic analysis indicates that strain FR1050^T* is affiliated to the genus *Hahella*. However, the low 16S rRNA gene sequence similarity between strain FR1050^T* and *H. chejuensis* KCTC 2396^T* (94.7 %) indicates that the gelbol isolate represents a different species. In addition, many phenotypic characteristics differentiate strain FR1050^T* from *H. chejuensis* (Tables 1 and 2). Based on the polyphasic evidence presented here, the gelbol isolate merits novel
species in the genus *Hahella*. The name *Hahella ganghwensis* sp. nov. is therefore proposed for strain FR1050^T.

Description of Hahella ganghwensis sp. nov.

Hahella ganghwensis (gang.hwen’sis. N.L. fem. adj. ganghwensis pertaining to Ganghwa Island, Republic of Korea, the geographical origin of the type strain of the species).

Gram-negative, oxidase- and catalase-positive, aerobic and halophilic. Colonies on MA are circular, smooth, convex with entire margin, slightly cream-coloured and approximately 1 mm in diameter after 5 days at 30 °C. Produces slightly brown pigment after 5 days on MA at 40 °C. Cells are motile rods, 0.4–0.5 × 1.0–1.5 μm in size. Spores are not formed. Growth occurs in 1–10% (w/v) sea salts (optimum 4–6 %). Does not grow without sea salts. Growth occurs at pH 5–10 (optimum 7–8) and at 15–40 °C (optimum 35 °C). Utilizes N-acetylgalactosamine, but not amygdalin, gluconate, caprate or adipate. Other physiological and biochemical characteristics are given in Table 1. Major fatty acids are C_{18:1}ω9c (39.0%) and C_{16:0} (18.1%); the complete fatty acid profile is given in Table 2. The DNA G+C content is 44 mol%.

The type strain, FR1050^T (=KCTC 12277^T = JCM 12486^T), was isolated from sediment of getbol, the Korean tidal flat.

Emended description of the genus Hahella

The description of the genus *Hahella* remains that given by Lee et al. (2001), with the following modifications. Aerobes. Reduction of nitrate to nitrite is variable. Require sea salts or NaCl for growth.

Acknowledgements

This work was supported by the 21C Frontier Microbial Genomics and Applications Center Program (grant MG02-0101-001-2-1-0). We thank Dr Hong Kum Lee (Korea Ocean Research & Development Institute) for the gift of the type strain of *Hahella chejuensis* and also E. Y. Moon for help with physiological tests.

References

