Taxonomy of the genus *Cupriavidus*: a tale of lost and found

Peter Vandamme and Tom Coenye

Laboratorium voor Microbiologie, Faculteit Wetenschappen, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium

DNA–DNA hybridization experiments and an evaluation of phenotypic characteristics, DNA base ratios and 16S rRNA gene sequences demonstrated that *Wautersia eutropha* (Davies 1969) Vaneechoutte et al. 2004, the type species of the genus *Wautersia*, is a later synonym of *Cupriavidus necator* Makkar and Casida 1987, the type species of the genus *Cupriavidus*. In conformity with Rules 15, 17, 23a and 37a(1) of the International Code of Nomenclature of Bacteria, the genus name *Cupriavidus* has priority over the genus name *Wautersia*, and all other members of the genus *Wautersia* are reclassified into *Cupriavidus as Cupriavidus basilensis* comb. nov. (type strain LMG 18990T = DSM 11853T), *Cupriavidus campinensis* comb. nov. (type strain LMG 19282T = CCUG 44526T), *Cupriavidus gilardi* comb. nov. (type strain DSM 5886T = CCUG 38401T), *Cupriavidus metallidurans* comb. nov. (type strain LMG 1195T = DSM 2839T), *Cupriavidus oxalaticus* comb. nov. (type strain LMG 2285T = CCUG 2086T = DSM 1105T), *Cupriavidus pauculus* comb. nov. (type strain LMG 3244T = CCUG 12507T), *Cupriavidus respiraculi* comb. nov. (type strain LMG 21510T = CCUG 46809T) and *Cupriavidus taiwanensis* comb. nov. (type strain LMG 19424T = CCUG 44398T).

Cupriavidus necator was described by Makkar & Casida (1987) to accommodate a non-obligate bacterial predator of various Gram-negative and Gram-positive soil bacteria and fungi (Byrd et al., 1985; Sillman & Casida, 1986; Zeph & Casida, 1986). The single known isolate, strain N-1T (=LMG 8453T), was obtained from soil in the vicinity of University Park, PA, USA. When confronted with *Agromyces ramosus* mycelia during the so-called ‘attack–counter-attack’ predation process, this strain produces several chemical signals, one of which chelates copper. *C. necator* is highly resistant to copper and its growth initiation is strongly stimulated by copper (Makkar & Casida, 1987).

Makkar & Casida (1987) reported the DNA base ratio and a wide range of morphological, biochemical and nutritional properties of this organism but did not examine its phylogenetic position through 16S rRNA studies as is currently standard procedure in prokaryotic taxonomy. They noticed several characteristics their organism shared with other members of the genus *Alcaligenes*, which, at that time, comprised multiple species, including *Alcaligenes faecalis* (the type species), *Alcaligenes xylosoxidans* and allied species (now all classified in the genus *Achromobacter*, Yabuuchi et al., 1998) and *Alcaligenes eutrophus* first reclassified in the genus *Ralstonia* (Yabuuchi et al., 1995) and recently transferred again, to the novel genus *Wautersia* (Vaneechoutte et al., 2004). However, a few unique biochemical characteristics and the spectacular predatory activity convinced Makkar & Casida (1987) to classify their strain into a novel genus and species.

In the course of a long-term study of the biodiversity of various *Burkholderia cepacia*-like bacteria, we discovered a nearly complete 16S rRNA gene sequence that was deposited for *C. necator* in the public database under the accession number AF191737. This sequence was very similar to that of *Wautersia eutropha* isolates. Fig. 1 shows the result of the comparison of the 16S rRNA gene sequences of *C. necator* LMG 8453T with those of strains representing various *Ralstonia* isolates. SDS-PAGE of whole-cell proteins was performed as described previously (Pot et al., 1994), after growth of the isolates for 48 h at 37°C on trypticase soy agar (BBL). Densitometric analysis, normalization and interpolation of the protein profiles were performed using the GelCompar 4.2 software.
wells as described by Ezaki performed with photobiotin-labelled probes in microplate DNA–DNA hybridization experiments were subsequently very similar (Fig. 2).

reference strains (Jenni W. eutropha isolates represent the same genospecies and confirm that, in

Given the reported difference in DNA base ratio for the two taxa [67 mol% G+C for W. eutropha (Goris et al., 2001) versus 57 mol% for C. necator (Makkar & Casida, 1987)], we determined the DNA base ratio of C. necator LMG 8453T by two approaches. The DNA was enzymically degraded into nucleosides as described by Mesbah et al. (1989). The obtained nucleoside mixture was then separated by HPLC using a Waters SymmetryShield C8 column thermostatted at 37 °C. The solvent was 0·02 M NH4H2PO4 (pH 4·0) with 1·5 % acetonitrile. Non-methylated lambda phage DNA (Sigma) was used as the calibration reference. In addition, the DNA base ratio was also determined by thermal denaturation and calculated as described by De Ley (1970). The former method yielded a G+C content of 65 mol%, the latter 66 mol%. These values are similar to values previously determined for W. eutropha (Goris et al., 2001; Jenni et al., 1988) and clearly different from the value for C. necator determined by Makkar & Casida (1987). We believe that this difference is due to experimental error in the original study.

The results of the extensive biochemical characterization of C. necator LMG 8453T generally correlate well with those provided by Yabuuchi et al. (1995) and De Baere et al. (2001) for W. eutropha. Both organisms are reported as Gram-negative, peritrichously flagellated bacteria with an oxidative metabolism. They produce catalase and oxidase and reduce nitrate to nitrite but exhibit no DNase activity. They hydrolyse Tween 80, but not urea, gelatin or aesculin. The remarkable resistance to (and growth stimulation by) copper was one of the key arguments for excluding strain the isolate described by Makkar & Casida (1987) should have been classified as Alcaligenes eutrophus Davis 1969. Alcaligenes eutrophus was reclassified in the novel genus Ralstonia, together with two former Burkholderia species, Burkholderia solanacearum and Burkholderia pickettii (Yabuuchi et al., 1995). Subsequently, the genus Ralstonia was divided into Ralstonia sensu stricto and the novel genus

package (Applied Maths). The whole-cell protein profiles of C. necator LMG 8453T and of W. eutropha LMG 1199T (=TF93T) and LMG 1201 (=H16), two established W. eutropha reference strains (Jenni et al., 1988), were very similar (Fig. 2).

DNA–DNA hybridization experiments were subsequently performed with photobiotin-labelled probes in microplate wells as described by Ezaki et al. (1989), using an HTS7000 Bio Assay Reader for the fluorescence measurements. The hybridization temperature was 50 °C. DNA was prepared as described by Pitcher et al. (1989). The DNA–DNA binding values obtained were 100 % between W. eutropha LMG 1199T and LMG 1201 (which is in perfect agreement with a previously published value; Jenni et al., 1988), 79 % between W. eutropha LMG 1199T and C. necator LMG 8453T and 92 % between W. eutropha LMG 1201 and C. necator LMG 8453T. These data indicate unambiguously that the three isolates represent the same genospecies and confirm that, in
Wautersia, with *W. eutropha* as the type species. As outlined above, the name *C. necator* was validly published in 1987 and the names *Ralstonia* and *Wautersia* were only published much later. Rule 23a of the International Code of Nomenclature of Bacteria (Lapage *et al.*, 1992) specifies that each taxon above a species can bear only one correct name, that is, the earliest that is in accordance with the Rules of the Code.

In addition, the nomenclatural type of a taxon is that element of the taxon with which it is permanently associated. Rule 42 specifies that, in the case of subspecies, species, subgenera and genera, if two or more taxa of the same rank are united, the oldest legitimate name or epithet is retained. Therefore, the genus name *Wautersia* is a later synonym of the genus *Cupriavidus*, for which the type species is *C. necator* (Rule 15 of the Code). Furthermore, the Code stipulates that the type determines the application of the name of a taxon if the taxon is subsequently divided or united with another taxon (Rule 17). While renaming and subsequent further renaming of bacterial species causes confusion and, not the least, irritation in the wider microbiological community, adhering to the rules of nomenclature is essential for establishing a truly systematic taxonomy. Therefore, while it may be inconvenient to deal with two name changes for a bacterium within one year (i.e. *Ralstonia* to *Wautersia* to *Cupriavidus*), in the long run, such reorganizations of the taxonomy of organisms are warranted as new data come to light.

In contrast with the etymology presented by Makkar & Casida (1987), the gender of the genus name *Cupriavidus* is masculine [Rule 65(2)]. We therefore propose to reclassify the former *Wautersia* species as follows.

Emended description of the genus *Cupriavidus*

The description of the emended genus *Cupriavidus* is based on that presented by Makkar & Casida (1987) with some modifications. Cells are Gram-negative, peritrichously flagellated rods. Chemoheterotrophic or chemolithotrophic. The metabolism is oxidative. Several amino acids are used as sole carbon and nitrogen sources. Catalase and oxidase activity is produced. Resistance to various metals is widespread. The respiratory quinone Q8 has been reported in *W. eutropha* (Yabuuchi *et al.*, 1995). The DNA G+C content is between 63 and 69 mol%. Species occur in soil and human clinical specimens, particularly in samples from debilitated patients. The type species is *Cupriavidus necator*.

Description of *Cupriavidus basilensis* comb. nov.

Cupriavidus basilensis [N.L. masc. adj. *basilensis* from Basilea (Basel), where the type strain was isolated].

The description is identical to that given for *Wautersia basilensis* by Vaneechoutte *et al.* (2004). The type strain is LMG 18990T (= DSM 11853T).

Description of *Cupriavidus campinensis* comb. nov.

Cupriavidus campinensis (N.L. masc. adj. *campinensis* from the Kempen or Campine, the geographical region of north-east Belgium where this bacterium was initially isolated).

The description is identical to that given for *Wautersia campinensis* by Vaneechoutte *et al.* (2004). The type strain is LMG 19282T (= CCUG 44526T).

Description of *Cupriavidus gilardii* comb. nov.

The description is identical to that given for *Wautersia gilardii* by Vaneechoutte *et al.* (2004). The type strain is LMG 5886T (= CCUG 38401T).

Description of *Cupriavidus metallidurans* comb. nov.

Cupriavidus metallidurans (N.L. masc. part. adj. *metallidurans* enduring metal, to indicate that these bacteria are able to survive high heavy-metal concentrations).

The description is identical to that given for *Wautersia metallidurans* by Vaneechoutte *et al.* (2004). The type strain is LMG 1195T (= DSM 2839T).

Description of *Cupriavidus oxalaticus* comb. nov.

Cupriavidus oxalaticus (N.L. masc. adj. *oxalaticus* pertaining to oxalate).

The description is identical to that given for *Wautersia oxalatica* by Vaneechoutte *et al.* (2004). The type strain is LMG 2235T (= CCUG 2086T = DSM 1105T).

Description of Cupriavidus pauculus comb. nov.

Cupriavidus pauculus (L. masc. adj. *pauculus* rare, few, to indicate that these strains only sporadically cause human infections).

The description is identical to that given for *Wautersia paucula* by Vaneechoutte *et al.* (2004). The type strain is LMG 3244T (= CCUG 12507T).

Description of Cupriavidus respiraculi comb. nov.

Cupriavidus respiraculi (L. gen. n. *respiraculi* of the respiratory system).

The description is identical to that given for *Wautersia respiraculi* by Vaneechoutte *et al.* (2004). The type strain is LMG 21510T (= CCUG 46809T).

Description of Cupriavidus taiwanensis comb. nov.

Cupriavidus taiwanensis (N.L. masc. adj. *taiwanensis* from Taiwan, where root-nodulating strains were isolated).

The description is identical to that given for *Wautersia taiwanensis* by Vaneechoutte *et al.* (2004). The type strain is LMG 19424T (= CCUG 44338T).

Acknowledgements

T.C. and P.V. are indebted to the Fund for Scientific Research – Flanders (Belgium) for a position as postdoctoral fellow and research grants, respectively. T.C. also acknowledges support from the Belgian Federal Government (Federal Office for Scientific, Technical and Cultural Affairs). We thank J. Euzéby, B. J. Tindall and H. G. Trüper for clarifying the nomenclatural consequences of the detected synonymy.

References

