Candida kunwiensis sp. nov., a yeast associated with flowers and bumblebees

Soon Gyu Hong,1 Kyung Sook Bae,1 Michel Herzberg,2 Andreas Titze2 and Marc-André Lachance3

1Korean Collection for Type Cultures, Korea Research Institute of Bioscience & Biotechnology, no. 52, Oun-dong, Yusong, Taejon 305-333, Republic of Korea
2Plant Ecology, Department of Biology, Philipps University, Marburg, Karl-von-Frisch-Straße, 35043 Marburg, Germany
3Department of Plant Sciences, University of Western Ontario, London, Ontario, Canada N6A 5B7

A novel asexual ascomycetous yeast, **Candida kunwiensis** (SG99-26T = KCTC 17041T = CBS 9067T), was isolated from sweet potato (**Ipomoea batatas**) flowers in Korea and from the body surface of pollinating bumblebees in Germany. Comparative analysis of the D1/D2 domain of 26S rDNA of all available sequences for ascomycetous yeasts showed that the novel species was phylogenetically related to the genus **Metschnikowia**, but the sequence similarity was low. Morphologically and physiologically, **C. kunwiensis** in many ways resembles **Metschnikowia pulcherrima**, but can be distinguished from this species by its ability to assimilate lactic acid and its inability to produce pulcherrimin.

Certain yeast species with affinities to the genus **Metschnikowia** occur in flowers, fruits and associated vector insects (Miller & Phaff, 1998). **Metschnikowia hawaiiensis** (Lachance et al., 1998b), **Metschnikowia continentalis** (Lachance et al., 1998b), **Metschnikowia lochheadii**, **Metschnikowia drosophilae** (Lachance et al., 2001a) and **Candida ipomoeae** (Lachance et al., 1998a) occur on morning glories (**Ipomoea** spp.) and insects, including drosophilids, beetles and bees, found on these flowers (Lachance et al., 2001b). Other yeasts isolated from flowers include **Metschnikowia gruessii**, **Metschnikowia lunata**, **Metschnikowia pulcherrima**, **Metschnikowia reukaufii** (Miller & Phaff, 1998) and **Metschnikowia koreensis** (Hong et al., 2001).

In the course of an isolation programme of yeasts from various natural sources in Korea, a strain (SG99-26T) of ascomycetous affinity was isolated from flowers of **Ipomoea batatas** Lam. Comparison of the sequence of the D1/D2 domain of the 26S rDNA with sequences from all currently recognized ascomycetous yeasts and comparison of physiological profiles indicated that strain SG99-26T represented a novel yeast species. Independently, a study of yeasts associated with pollinating bumblebees in Germany yielded various strains of a yeast with the same D1/D2 sequences as that of strain SG99-26T. Here, we describe the Korean strain and German strains as representing a novel yeast species, for which the name **Candida kunwiensis** is proposed. This novel species has a close phylogenetic relationship with the genus **Metschnikowia**.

The origins of the novel strains discussed in this report are given in Table 1. Morphological and physiological characteristics were examined by the conventional techniques described by Yarrow (1998). For strain SG99-26T, the assimilation of carbon sources was examined at 25°C on a rotary shaker (120 r.p.m.) at 7-day intervals for 21 days. The utilization of nitrogen sources was examined by auxanography for 7 days. Urease activity was tested in Christensen’s urea agar (Christensen, 1946). The determination of the coenzyme Q system was carried out as described by Yamada (1998) using an HPLC apparatus equipped with a Spherisorb S5 ODS2 column (Waters). The DNA base content (G+C mol%) was determined by the thermal denaturation method (Tm) using 0.1×SSC solution. The G+C content was calculated using the equation G+C mol% = (Tm - Tm) / (Tm - Tm), where a DNA preparation from **Escherichia coli** KCTC 2443 (K-12; G+C content, 51.0 mol%) was included as a reference (Tm) (Owen & Pitcher, 1985). The German strains were characterized nutritionally by replica plating. All the novel strains are maintained in liquid nitrogen in the yeast collection of the Department of Plant Sciences, University of Western Ontario, Canada.

The D1/D2 domain of the nuclear 26S rDNA of strain SG99-26T was amplified and sequenced using the primer

The GenBank accession number for the partial 26S rDNA sequence of **Candida kunwiensis** SG99-26T is AF389527.
Table 1. Origins of strains of Candida kunwiensis

<table>
<thead>
<tr>
<th>Strain no.</th>
<th>Substrate</th>
<th>Host plant</th>
<th>Isolated in</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG99-26T</td>
<td>Flower</td>
<td>Ipomoea batatas</td>
<td>Kunwi, Korea</td>
</tr>
<tr>
<td>MH266, MH277, MH402</td>
<td>Bombus terrestris</td>
<td>Helleborus foetidus</td>
<td>Marburg, Germany</td>
</tr>
<tr>
<td>MH275</td>
<td>Bombus cryptarum</td>
<td>Helleborus foetidus</td>
<td>Marburg, Germany</td>
</tr>
<tr>
<td>MH304</td>
<td>Bombus hortorum</td>
<td>Helleborus foetidus</td>
<td>Marburg, Germany</td>
</tr>
<tr>
<td>MH394</td>
<td>Bombus lapidarius</td>
<td>Helleborus foetidus</td>
<td>Marburg, Germany</td>
</tr>
<tr>
<td>MH356</td>
<td>Flower</td>
<td>Helleborus foetidus</td>
<td>Marburg, Germany</td>
</tr>
<tr>
<td>MH397</td>
<td>Bombus pascuorum</td>
<td>Helleborus foetidus</td>
<td>Marburg, Germany</td>
</tr>
</tbody>
</table>

Latin diagnosis of Candida kunwiensis Hong, Bae, Herzberg, Titze et Lachance sp. nov.

Fig. 1. (a) Differential interference contrast (DIC) micrograph of vegetative cells of C. kunwiensis SG99-26T. Bar, 10 μm. (b, c) Phase-contrast micrographs of (b) cell with tubular bud (YM agar) and (c) chlamydospores (dilute V8 agar) of C. kunwiensis MH266.
mol%. Typus SG99-26T, ex flora Ipomoea batatas isolatus est. In collectione zymotica Korean Collection for Type Cultures (KCTC 17041T = CBS 9067T) preservatus.

Description of Candida kunwiensis Hong, Bae, Herzberg, Titze & Lachance sp. nov.

Candida kunwiensis (kun.wi.en 9 sis. N.L. nom. fem. adj. kunwiensis of Kunwi, referring to the town where the type strain was isolated).

In 5 % malt extract broth after 3 days incubation at 25 °C, cells are globose to subglobose (4–7 × 4–7 μm), occurring (mainly) singly. Vegetative reproduction is proceeded by multilateral budding (Fig. 1a). Cells may produce a tubular bud equivalent to three or more cell lengths (Fig. 1b). Sediment is formed after 4 weeks incubation. A pellicle is absent. On 10 % malt extract agar after 3 days incubation at 25 °C, colonies are white and butyrous; colonies have dull or smooth surfaces, and smooth and entire margins. In Dalmau plate cultures on cornmeal agar after 10 days incubation at 25 °C, no growth under the coverslip is observed, except in the margin where air is transmitted through the media. No pseudomycelia or hyphae are observed. Does not sporulate on oatmeal agar, potato glucose agar, water agar, YM agar, cornmeal agar, 5 % malt extract agar, 10 % malt extract agar, 1 % acetic acid agar, V8 agar or diluted V8 agar at various temperatures (Yarrow, 1998). However, after one week on dilute (20 %) V8 agar, chlamydospores of the type found in Metschnikowia pulcherrima are formed in abundance (Fig. 1c). Ferments D-glucose (sometimes weakly); D-galactose, sucrose, maltose, lactose, raffinose and trehalose are not fermented. Assimilates the carbon compounds D-glucose, D-galactose, L-sorbose, sucrose, maltose, cellobiose, trehalose, melezitose, D-xylrose (sometimes slow), D-glucosamine (sometimes weak), N-acetyl-D-glucosamine, ethanol, glycerol, ribitol, D-mannitol, D-glucitol, methyl α-D-glucoside, salicin, D-gluconate, glucono-δ-lactone, DL-lactate (sometimes weak) and succinate. Does not assimilate lactose, melibiose, raffinose, inulin, soluble starch, L-arabinose, D-arabinose, D-ribose, L-ramnose, methanol, erythritol, galactitol, citrate, inositol or glucuronate. Assimilation of hexadecane is slow and variable. Assimilates the nitrogen compounds ethylamine, cadaverine and L-lysine; does not assimilate nitrate, nitrite, D-glucosamine, creatine or creatinine. Grows in the presence of 10 % NaCl/5 % glucose, 16 % NaCl/5 % glucose and 50 % glucose. Does not grow in the presence of 0-01 % cycloheximide, 0-1 % cycloheximide or 1 % acetic acid. Does not grow in vitamin-free medium. Does not form starch. Urease-negative. Diazonium Blue B stain-negative. Grows at 30 °C, but not at 35 °C. Major ubiquinone system of the type strain (SG99-26T = KCTC 17041T = CBS 9067T) is Q9; Q8 is also present in a significant amount (Q9 : Q8 = 4 : 1). DNA G+C content is 41.1 ± 1.3 mol% (mean value of three determinations). The closest relative of Candida kunwiensis, based on D1/D2 domain sequences of 26S rDNA, is Metschnikowia gruessii NRRL Y-17809T (85 % sequence similarity; 72 bases different per 488 sites; Fig. 2).

Phylogenetic placement. The 26S rDNA sequence of strain MH266 was identical to that of strain SG99-26T, verifying their conspecificity. Unambiguous alignment of variable regions was very difficult because multiple insertion or deletion events have occurred in the 26S rDNA.

![Fig. 2. Phylogeny of Metschnikowia and related Candida spp. based on the D1 domain of the 26S rDNA sequences (S. cerevisiae numbering 45–405). The tree was constructed by the neighbour-joining algorithm using a distance matrix calculated using Kimura’s two-parameter model. The numbers at the nodes indicate the bootstrap values for 1000 iterations, expressed as percentages. Internal branches that were conserved both in the distance tree and in six equally parsimonious trees are represented by thick lines.](http://ijs.sgmjournals.org)
Fig. 3. Model of the secondary structure of the D2 domain for selected Metschnikowia spp. and C. kunwiensis.
sequences of M. continentalis var. continentalis, M. continentalis var. borealis, M. hawaiiensis, M. hibisci, M. lochheadii and Candida ipomoeae. The D2 domains of these species ranged from 48 bp for M. hibisci to 63 or 64 bp for the other five species, in comparison to 139 bp for M. lunata, the sister taxon to the group containing the above-mentioned six species. The other Metschnikowia species also have short D2 domains (154–184 bp) compared to S. cerevisiae (210 bp). The secondary structures of the D2 domains (Fig. 3) of M. hibisci and M. hawaiiensis are clearly different from those of other Metschnikowia species. By contrast, the D2 domains of M. hawaiiensis, C. ipomoeae, M. continentalis and M. continentalis var. borealis differ only by minor changes in loop and bulge motifs. M. hibisci also has short stem–loop structures with small bulges in the D2 domain, but the sequence is completely different from those of the aforementioned species. The D2 domain of M. lunata has a similar secondary structure and sequence motifs to that of M. bicuspidata, but several deletions were also observed. The secondary structure of the D2 domain of C. kunwiensis SG99-26 is similar to those of M. pulcherrima, M. gruessii and M. bicuspidata with some minor differences. Based on the secondary structure models, it is proposed that C. kunwiensis is most closely related to the core group of Metschnikowia species, which includes M. bicuspidata, the type species of the genus, and more distantly related to the species that share shorter D2 domains, such as M. hibisci and M. hawaiiensis.

In view of their differences in secondary structure, one might even question whether the D2 domains of all Metschnikowia species are in fact homologous. Their inclusion in data used for phylogenetic reconstructions can be a source of serious distortion. For this reason, the tree presented in Fig. 2 is based only on that portion of the D1/D2 sequence that can be aligned unambiguously, and excludes most of the variable D2 region. A tree based on the entire D1/D2 sequence (not shown) suggested different relationships amongst M. continentalis var. continentalis, M. continentalis var. borealis, M. lochheadii and C. ipomoeae. The tree also suggested different phylogenetic positions of M. pulcherrima, M. hibisci, M. lunata, C. torresii, M. drosophilae and M. agaves. In the phylogeny based on partial sequences (Fig. 2), C. kunwiensis and M. gruessii appeared as sister species related to the core group, with a fairly high bootstrap value.

Identification. The physiological characteristics of C. kunwiensis are typical of those of most Metschnikowia species and nearly identical to those of M. pulcherrima. Lack of pulcherrinin production and growth on lactic acid by C. kunwiensis probably represent the only useful features to distinguish the two species. Unfortunately, growth on lactic acid exhibited some variation (positive or weak) amongst our strains, and is reported as negative or weak in M. pulcherrima (Miller & Phaff, 1998). Pulcherrimin production is also reported as variable in M. pulcherrima. This opens the possibility that some of the strains identified in the past as M. pulcherrima might in fact be isolates of C. kunwiensis.

Ecology. In the German study, C. kunwiensis was recovered almost exclusively from the body surface of five different species of bumblebees, suggesting an association with pollen (Table 1). Candida bombi was also frequent in these samples. In contrast, flowers visited by the bumblebees, the nectar of these flowers and the proboscies of the bumblebees normally had a different yeast community, composed predominantly of M. reukaufii, with lesser proportions of M. gruessii and C. bombi. It will therefore be of great ecological interest to identify the principal habitat of C. kunwiensis in its Korean environment, to see if an association with pollen exists there too.

Acknowledgements

This work was supported by grant KBM1000111 from the Korea Research Council of Fundamental Science & Technology (S.G.H. and K.S.B.) and the Natural Sciences and Engineering Research Council of Canada (M.-A.L.).

References

