Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., novel species from farm soils in Korea

Soon Wo Kwon, Jong Shik Kim, In Cheol Park, Sang Hong Yoon, Duck Hwan Park, Chun Keun Lim and Seung Joo Go

Among Pseudomonas strains isolated from Korean agricultural soils, four strains (Ps 9-14 group: Ps 1-2, Ps 1-10, Ps 5-5 and Ps 9-14T) from the Suwon, Goesan and Samchok regions, three strains (Ps 3-10 group: Ps 2-22, Ps 3-1 and Ps 3-10T) from Umsong Region and four strains (Pss 26 group: Pss 14, Pss 25, Pss 26T and Pss 27) from Jinju Region were identified as three independent groups on the basis of 16S rDNA sequence analysis. While, on the basis of 16S rDNA sequence analysis, Ps 9-14T and Ps 3-10T form a phyletic line with Pseudomonas jessenii CIP 105274T, Pseudomonas pavonaeae IAM 1155 and Pseudomonas graminis DSM 11363T, Pss 26T is grouped with Pseudomonas citronellolis ATCC 13674T and Pseudomonas nitroreducens IAM 1439T. According to DNA–DNA hybridization studies, strain Ps 9-14T shows high DNA relatedness to strain Ps 3-10T (52 %) and Pseudomonas migulae CIP 105470T (49 %) and strain Ps 3-10T reveals high relatedness to strain Ps 9-14T (48 %) and P. jessenii CIP 105274T (45 %). Strain Pss 26T shows high relatedness to P. citronellolis LMG 18378T (54 %), P. nitroreducens ATCC 33634T (48 %) and Pseudomonas aeruginosa LMG 1242T (48 %). On the basis of phenotypic and genotypic analyses, three novel species of the genus Pseudomonas are proposed: Pseudomonas koreensis sp. nov. (type strain Ps 9-14T =LMG 21318T =KACC 10848T) for the Ps 9-14 group, Pseudomonas umsongensis sp. nov. (type strain Ps 3-10T =LMG 21317T =KACC 10847T) for the Ps 3-10 group and Pseudomonas jinjuensis sp. nov. (type strain Pss 26T =LMG 21316T =KACC 10760T) for the Pss 26 group.

Since its creation by Migula (1894), the genus Pseudomonas has comprised very heterogeneous species. This resulted from the ambiguous definition of the genus Pseudomonas taxon as ‘polarly flagellated strictly aerobic rods with a respiratory type of metabolism in which oxygen is used’. The heterogeneity of the genus Pseudomonas was significantly resolved by extensive taxonomic studies based on phenotypic (Sneth et al., 1981; Stanier et al., 1966) and genotypic tests (Anzai et al., 1997, 2000; Champion et al., 1980; Moore et al., 1972, 1973; Sands et al., 1970). In particular, analyses of 16S rRNA sequences contributed to the elucidation of the natural relationships of species of the genus Pseudomonas at the intrageneric level and led to the significant redefinition and restriction of the genus Pseudomonas sensu stricto. Most recently, Anzai et al. (2000) analysed the phylogenetic relationships of 16S rDNA sequences for 128 valid and invalid Pseudomonas species that were classified as genuine Pseudomonas species at that time. Of them, 57 valid and invalid species, including Pseudomonas aeruginosa, the type species of the genus Pseudomonas, were recognized as members of the genus Pseudomonas sensu stricto. Other Pseudomonas species were found to be related to other genera, which were placed in four subclasses of the Proteobacteria (the α-, β-, γ- and ω-subclasses).

Members of the genus Pseudomonas are widely distributed in agricultural soils; they have a variety of functions related to the decomposition of organic matter and the promotion
of plant growth and can also show pathogenic effects (Palleroni, 1993). Most of the farming soils in Korea are characterized, chemically, by low soil pH values and in terms of cultivation methods, by rotation of upland and paddy land. A soil environment such as this, together with Korea’s peculiar isolation, would tend to influence the population structure and evolution of *Pseudomonas* species and lead to the development of a bacterial population that differs from those of other regions. We isolated several groups of the genus *Pseudomonas* from Korean agricultural soils. As a result of 16S rRNA gene sequence analysis of these strains, we found three phylogenetic groups distinct from the established species of the genus *Pseudomonas*. In this study, the strains of the three groups were characterized using phenotypic and genomic characteristics to confirm their taxonomic status.

Four strains (Ps 1-2, Ps 1-10, Ps 5-5 and Ps 9-14T) from soils of the Goesan, Samchok and Umsong regions, three strains (Ps 2-22, Ps 3-1 and Ps 3-10T) from soil of Umsong Region and four strains (Ps 14, Ps 25, Ps 26T and Ps 27) from soil of Jinju Region in Korea were isolated using P1 agar medium (1% *K*H₂PO₄, 0·5 g *MgSO₄*·7H₂O, 0·2 g KCl, 5 g NaNO₃, 1 g deoxycholic acid, 5 g betaine and 15 g agar; Kato & Itoh, 1983). In general, all strains were cultured on trypticase soy agar (TSA) medium at 30 °C unless otherwise stated. Strains were preserved using two methods: deep-freezing with 15% glycerol and freeze-drying with 15% skim milk.

For observation of cell morphology by TEM, cells were grown on TSA and suspended in physiological saline solution. A small drop of suspension was placed on a carbon-coated copper grid and the cells were negatively stained with 0·5% uranyl acetate for observation under the electron microscope (model 912AB; LEO). To investigate basic physiological and biochemical characteristics, we used the methods of Stanier et al. (1966) and Schaad (1988) for the following tests: Gram reaction, oxidase reaction, arginine dihydrolase, nitrate reduction, levan formation from sucrose and hydrolysis of gelatin, starch, Tween 80 and aesculin. Catalase was assayed with the SpotTest catalase test (Difco). Fluorescent pigment production was tested on King medium B (King et al., 1954) and *Pseudomonas* agar F (PAF; Difco). Temperature tolerance was tested by checking growth at 4, 30, 37 and 41 °C and tolerance of salinity was tested with growth on trypticase soy broth supplemented with 1, 3, 5, 7 and 9% (w/v) NaCl and solidified with 1·5% (w/v) agar. Utilization of carbon sources was examined by using the Biolog identification system. All strains were tested three times with GN2 microplates (Biolog) according to the manufacturer’s recommendations; the reactions were observed after 24 or 48 h. An API 20 NE test kit was also used for classical and phenotypic tests; examination was done after 48 h.

Genomic DNA was isolated by the method of Ausubel et al. (1987), except that the lysates were extracted twice with chloroform to remove residual phenol. The concentration of DNA was measured by using a spectrophotometer. The G+C content of genomic DNA was determined by HPLC (by the Laboratorium voor Microbiologie, Ghent, Belgium) as described previously (Mesbah et al., 1989). To determine genomic relatedness, the filter hybridization method was performed according to Seldin & Dubnau (1985). Probe labelling was conducted by using the non-radioactive DIG-High prime system (Roche); hybridized DNA was visualized using the DIG luminescent detection kit (Roche). Reassociation was conducted at two temperatures, 60 and 65 °C. DNA–DNA relatedness was quantified by using a densitometer (Bio-Rad).

16S rDNAs were amplified by using universal primers fD1 and rP2 (Weisburg et al., 1991) and their nucleotide sequences were determined with an Applied Biosystems 377 sequencer (Applied Biosystems). The 16S rDNA sequences were aligned by using the MEGALIGN program of DNASTAR. An evolutionary distance matrix was generated as described by Jukes & Cantor (1969). The evolutionary tree for the datasets was inferred from the neighbour-joining method of Saitou & Nei (1987) by using the neighbour-joining program of MEGA (Kumar et al., 1993). The stability of relationships was assessed by performing bootstrap analyses of the neighbour-joining data based on 1000 resamplings.

All strains of the three groups are Gram-negative and non-spore-forming rods. Cells are approximately 1 μm by 1·5 (strain Ps 3-10T) or 2 (Ps 9-14T and Ps 26T) μm in size and are motile by means of single (Ps 3-10T and Ps 26T) or multiple (Ps 9-14T) polar flagella (Fig. 1). A comparison of physiological and biochemical characteristics among the Ps 9-14, Ps 3-10 and Pss 26 groups and other closely related *Pseudomonas* species is shown in Table 1. The Ps 9-14 group is phenotypically related to the Ps 3-10 group, but can be clearly differentiated from it by the presence of multiple flagella, by the absence of nitrate reduction and by growth at 80 °C. The Ps 9-14 and Ps 3-10 groups also share phenotypic characteristics with *Pseudomonas jessenii* and *Pseudomonas pavonaceae*, but the two novel groups can be clearly distinguished from the two established species by virtue of several biochemical characteristics. Members of the Pss 26 group shows phenotypic relationships with *Pseudomonas citronellolis*, *Pseudomonas nitroreducens* and *Pseudomonas alcaligenes*. However, Pss 26 group members are generally differentiated from *P. citronellolis* by the absence of fluorescence and the absence of growth at 4 °C and can be distinguished from *P. nitroreducens* by the absence of fluorescence and by the ability to grow at 41 °C. Although the phenotypic differentiation of Pss 26 group members from *P. alcaligenes* is not clear, none of the strains in the Pss 26 group hydrolyses gelatin or Tween 80, whereas some strains of *P. alcaligenes* do (Table 1). Many of the phenotypic traits of *P. citronellolis* were tested in this study using strain LMG 18378B because its taxonomic characterization was not fully determined previously (Seubert, 1960). Phenotypic variability is observed among strains of each of the three groups. The absence of gelatin hydrolysis and...
lecithinase production, the presence of glucose acidification and the assimilation of D-galacturonic acid, D-glucuronic acid and α-ketobutyric acid differentiate strain Ps 1-2 from the other strains of the Ps 9-14 group, while the absence of l-pyroglutamic acid utilization and the presence of urease production are observed only for strain Ps 1-10. The strains of the Ps 3-10 group form a relatively homogeneous group and cannot be differentiated using the key phenotypic characteristics shown in Table 1. However, on the basis of carbohydrate utilization, strain Ps 2-22 can be differentiated from strains Ps 3-1 and Ps 3-10T in that it utilizes D-arabitol, D-mannitol and D-psicose but does not use D-glucuronic acid or hydroxy-L-proline. The four strains of the Pss 26 group are also homogeneous since they shared most phenotypic characteristics, except for the assimilation of certain carbohydrates; strain Pss 14 uses hydroxy-L-proline and cannot use acetic acid and adipate, unlike the other three strains. The G+C contents of strains Ps 9-14T, Ps 3-10T and Pss 26T are respectively 60.7, 60.0 and 66.9 mol%, all of which fall within the expected range for the genus *Pseudomonas* (58–70 mol%; Palleroni, 1984) (Table 1).

The 16S rDNA sequences (approx. 1450 bp) of two strains from each of the three novel groups (Ps 9-14T and Ps 1-2; Pss 9-14T and Pss 1-2; Ps 3-10T and Pss 3-10T) were determined and showed 99.4–100% similarity. The sequences were deposited in the GenBank database under the accession numbers BC087833, BC087834, BC087835 and BC087836.

Fig. 1. Transmission electron micrographs of negatively stained cells of strains Ps 9-14T (a), Ps 3-10T (b) and Pss 26T (c). Bars, 2 (a, b) or 1 (c) μm.
Ps 3-10T and Ps 3-1; Pss 26T and Pss 14), corresponding to nt 32–1490 of the Escherichia coli 16S rDNA sequence (GenBank accession no. J01695; Brosius et al., 1978), were determined. For sequence comparison and phylogenetic analysis of these strains and other closely related Pseudomonas species, partial 16S rDNA sequences (approx. 1320 bp) from nt 52–1377 in the genus Pseudomonas were analysed. The 16S rDNA sequence of strain Ps 9-14T shows the highest similarity (99.0%) to ‘P. pavonaceae’ IAM 1155 or P. citronellolis LMG 18378T because data were not available from the literature. All species are negative for starch hydrolysis.

Table 1. Characteristics that differentiate *P. koreensis* sp. nov., *P. umsongensis* sp. nov. and *P. jinjuensis* sp. nov. from other *Pseudomonas* species

Species: 1, *P. koreensis* sp. nov.; 2, *P. umsongensis* sp. nov.; 3, *P. jessenii*; 4, *P. graminis*; 5, ‘*P. pavonaceae*’; 6, *P. jinjuensis* sp. nov.; 7, *P. citronellolis*; 8, *P. nitroreducens*; 9, *P. alcaligenes*. Symbols: +, >90% of strains positive; −, >90% of strains negative; d, 11–89% positive; ND, no data. Characteristics of other *Pseudomonas* species are from Palleroni (1984), Behrendt et al. (1999) and VerHille et al. (1999). Data for species 5 and 7 other than flagellation were tested in this study using ‘*P. pavonaceae*’ IAM 1155 or *P. citronellolis* LMG 18378T because data were not available from the literature. All species are negative for starch hydrolysis.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescence</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Oxidase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gelatin hydrolysis</td>
<td>d</td>
<td>−</td>
<td>−</td>
<td>d</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>d</td>
</tr>
<tr>
<td>Arginine dihydrolase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>Lecithinase (egg yolk)</td>
<td>d</td>
<td>−</td>
<td>−</td>
<td>ND</td>
<td>−</td>
<td>−</td>
<td>ND</td>
<td>−</td>
<td>ND</td>
</tr>
<tr>
<td>Tween 80 hydrolysis</td>
<td>+</td>
<td>−</td>
<td>ND</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>ND</td>
<td>d</td>
</tr>
<tr>
<td>Levan formation</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>ND</td>
<td>−</td>
</tr>
<tr>
<td>Growth at:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 °C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>ND</td>
<td>−</td>
</tr>
<tr>
<td>41 °C</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Tolerance of NaCl at:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>ND</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>7%</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>ND</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>G+C content (mol%)</td>
<td>60-7</td>
<td>60-0</td>
<td>57-58</td>
<td>60-61</td>
<td>ND</td>
<td>66-9</td>
<td>ND</td>
<td>ND</td>
<td>64-68</td>
</tr>
</tbody>
</table>

To study DNA–DNA relatedness among the three novel groups and closely related *Pseudomonas* species, the genomic DNA of each of strains Ps 9-14T, Ps 3-10T and Pss 26T was labelled and hybridized to those of the Korean isolates and closely related *Pseudomonas* species at two hybridization temperatures (60 and 65 °C). The DNA relatedness values among strains within each of three novel groups were greater than 92% (Table 2). Genomic DNA relatedness between strain Ps 9-14T and other *Pseudomonas* species ranged from 14 to 56% and from 7 to 42% at hybridization temperatures of 60 and 65 °C, respectively, and strain Ps 9-14T showed high DNA relatedness to strain Ps 3-1 and *Pseudomonas migulae* CIP 105470T. Strain Ps 3-10T exhibited DNA relatedness of 9–48% and 7–42% at hybridization temperatures of 60 and 65 °C, respectively, and showed high levels of relatedness to strain Ps 9-14T and *P. jessenii* CIP 105274T. The level of DNA relatedness between strain Pss 26T and other *Pseudomonas* species varied from 17 to 54% and from 6 to 38% at 60 and 65 °C, respectively. Strain Pss 26T showed the highest value for DNA relatedness to *P. citronellolis* LMG 18378T (Table 2).

On the basis of phenotypic and genotypic characteristics, each of the three novel groups is clearly a member of the genus *Pseudomonas*, as can be seen from a variety of biochemical properties and 16S rDNA sequence analysis. Phylogenetic analysis based on 16S rDNA sequences has been recognized as the most important method for inferring relationships of the genus *Pseudomonas* (Moore et al., 1996; Anzai et al., 1997, 2000). According to Anzai et al. (2000), 57 valid or invalid species among 128 species of the genus *Pseudomonas* were affiliated to the genus *Pseudomonas sensu stricto* and were divided into two major groups and six subgroups. It is clear that the three strains Ps 9-14T, Ps 3-10T and Pss 26T are respectively closely related to ‘*P. pavonaceae*’ IAM 1155, *P. jessenii* CIP 105274T and *P. citronellolis* ATCC 13674T.
Table 2. Results of DNA–DNA hybridization experiments

Values are results from hybridization at 60/65 °C. –, Not done.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Ps 9-14<sup>T</sup></th>
<th>Ps 3-10<sup>T</sup></th>
<th>Pss 26<sup>T</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>P. koreensis sp. nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ps 9-14<sup>T</sup></td>
<td>100/100</td>
<td>48/38</td>
<td>–/–</td>
</tr>
<tr>
<td>Ps 5-5</td>
<td>99/93</td>
<td>42/33</td>
<td>–/–</td>
</tr>
<tr>
<td>Ps 1-10</td>
<td>94/92</td>
<td>46/36</td>
<td>–/–</td>
</tr>
<tr>
<td>Ps 1-2</td>
<td>97/96</td>
<td>43/37</td>
<td>–/–</td>
</tr>
<tr>
<td>P. umsongensis sp. nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ps 3-10<sup>T</sup></td>
<td>52/38</td>
<td>100/100</td>
<td>–/–</td>
</tr>
<tr>
<td>Ps 3-1</td>
<td>56/42</td>
<td>94/92</td>
<td>–/–</td>
</tr>
<tr>
<td>Ps 2-22</td>
<td>55/40</td>
<td>98/92</td>
<td>–/–</td>
</tr>
<tr>
<td>P. jinjuensis sp. nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pss 26<sup>T</sup></td>
<td>–/–</td>
<td>–/–</td>
<td>100/100</td>
</tr>
<tr>
<td>P. aeruginosa LMG 1242<sup>T</sup></td>
<td>15/10</td>
<td>20/20</td>
<td>48/36</td>
</tr>
<tr>
<td>P. citronellolis LMG 18378<sup>T</sup></td>
<td>–/–</td>
<td>–/–</td>
<td>54/38</td>
</tr>
<tr>
<td>P. fluorescens LMG 1794<sup>T</sup></td>
<td>22/13</td>
<td>15/15</td>
<td>17/6</td>
</tr>
<tr>
<td>P. fulva LMG 11722<sup>T</sup></td>
<td>30/25</td>
<td>9/7</td>
<td>36/22</td>
</tr>
<tr>
<td>P. gessardii CIP 105469<sup>T</sup></td>
<td>41/29</td>
<td>23/16</td>
<td>–/–</td>
</tr>
<tr>
<td>P. graminis DSM 11363<sup>T</sup></td>
<td>22/9</td>
<td>14/13</td>
<td>–/–</td>
</tr>
<tr>
<td>P. jessenii CIP 105274<sup>T</sup></td>
<td>47/32</td>
<td>45/42</td>
<td>–/–</td>
</tr>
<tr>
<td>P. migulae CIP 105470<sup>T</sup></td>
<td>49/36</td>
<td>33/29</td>
<td>–/–</td>
</tr>
<tr>
<td>P. monteilii CIP 104883<sup>T</sup></td>
<td>14/7</td>
<td>14/16</td>
<td>–/–</td>
</tr>
<tr>
<td>P. nitratreducens ATCC 33634<sup>T</sup></td>
<td>–/–</td>
<td>–/–</td>
<td>48/34</td>
</tr>
<tr>
<td>P. oleovorans LMG 2229<sup>T</sup></td>
<td>–/–</td>
<td>–/–</td>
<td>42/31</td>
</tr>
<tr>
<td>P. putida LMG 2257<sup>T</sup></td>
<td>22/16</td>
<td>20/19</td>
<td>38/24</td>
</tr>
<tr>
<td>P. stutzeri LMG 11199<sup>T</sup></td>
<td>–/–</td>
<td>–/–</td>
<td>45/29</td>
</tr>
</tbody>
</table>

DNA–DNA hybridization values have been used as a decisive means of demarcating taxonomic positions at the species level. The current species concept suggests that only those strains with at least approximately 70 % DNA–DNA relatedness and a ΔT_M value of 5 °C or less constitute a single species (Wayne et al., 1987). For DNA–DNA hybridization, closely related reference strains were selected by consideration of phenotypic and 16S rDNA sequence analyses. The filter hybridization method was used for species delineation because it gave 15–20 % greater hybridization values than the S1 nuclease method (Grimont et al., 1980). The strains from each of the three novel groups form highly homogeneous genomic groups on the basis of DNA relatedness values of more than 92 %. However, the three strains Ps 9-14^T, Ps 3-10^T and Pss 26^T shared the highest DNA relatedness (33–58 %) among the groups or species compared, none of which reached the 70 % cut-off value (Table 2). Thus, these three groups can be defined as three separate genomic groups.

In the light of the results presented here, we describe three novel species, *Pseudomonas koreensis* sp. nov., *Pseudomonas umsongensis* sp. nov. and *Pseudomonas jinjuensis* sp. nov.

Description of Pseudomonas koreensis sp. nov.

Pseudomonas koreensis (ko.re.en.’sis. N.L. adj. koreensis pertaining to Korea).

Cells are Gram-negative, non-spore-forming rods, approximately 1 × 2 μm in size, motile by more than one polar flagellum. Colonies are circular and white-yellow on Luria–Bertani (LB) agar and become mucoid after 2 days.
when cultured on TSA. Cells produce a fluorescent pigment on King B and PAF media. Catalase- and oxidase-positive and shows hydrolysis of arginine and Tween 80. Most strains liquefy gelatin, but do not show hydrolysis of starch and show no acidification of glucose. Reduction of nitrate to nitrite is negative. Most strains show positive lecithinase reaction. Urease reaction is variable among strains. Indole is not produced on tryptophan. Strains grow at 4°C but not at 37°C. Growth occurs in media supplemented with 5% NaCl, but not at a salinity higher than 7%. Results obtained with Biolog GN2 microplates indicate that strains utilize Tweens 40 and 80, N-acetyl-D-glucosamine, L-arabinose, D-arabitol, D-fructose, D-galactose, α-D-glucose, D-mannitol, D-mannose, methyl pyruvate, monomethyl succinate, acetic acid, cis-aconitic acid, citric acid, D-galactonic acid lactone, D-glucuronic acid, D-gluconic acid, D-glucosaminic acid, D-gluconic acid, D-glucosaminic acid, α-hydroxybutyric acid, β-hydroxybutyric acid, α-ketobutyric acid, D-α-ketovaleric acid, DL-lactic acid, malonic acid, propionic acid, quinic acid, D-saccharic acid, succinic acid, bromosuccinic acid, glucuronamide, alaninamide, D-alanine, L-alanine, L-alanyl glycine, L-asparagine, L-aspartic acid, L-glutamic acid, glycyI L-glutamic acid, L-histidine, hydroxy-L-proline, L-leucine, L-ornithine, L-proline, L-serine, L-threonine, α-amino butyric acid, urocanic acid, inosine, uridine, putrescine, 2-aminoethanol and glyceral. Utilization of D-galacturonic acid, D-glucuronic acid, D-galactonic acid lactone, D-gluconic acid, D-glucosaminic acid, D-gluconic acid, D-glucosaminic acid, α-hydroxybutyric acid, β-hydroxybutyric acid, α-ketobutyric acid, α-ketovaleric acid, DL-lactic acid, malonic acid, propionic acid, quinic acid, D-saccharic acid, succinic acid, bromosuccinic acid, glucuronamide, alaninamide, D-alanine, L-alanine, L-alanyl glycine, L-asparagine, L-aspartic acid, L-glutamic acid, glycyI L-glutamic acid, L-histidine, hydroxy-L-proline, L-leucine, L-ornithine, L-proline, L-serine, L-threonine, α-amino butyric acid, urocanic acid, inosine, uridine, putrescine, 2-aminoethanol and glyceral. Utilization of D-arabitol, D-mannitol, D-psicose, D-glucuronic acid and hydroxy-L-proline is variable among strains. The other organic substrates included in the Biolog GN2 microplates are not utilized. The test using the API 20 NE strip shows that strains assimilate glucose, arabinose, mannose, gluconate, caprate, malate, citrate and phenylacetic acid. Assimilation of mannositol is variable among strains. The strains do not assimilate N-acetylglucosamine, maltose or adipate. The G+C content of the DNA of Ps 3-10 T is 60.0 mol%. The type strain is strain Ps 3-10 T (=KACC 10847 T =LMG 21317 T).

Description of Pseudomonas umsongensis sp. nov.

Pseudomonas umsongensis (um-song.en’sis. N.L. adj. umsongensis referring to Umsong Region in Korea, where the bacteria were first found).

Cells are Gram-negative, non-spore-forming rods approximately 1 × 2 μm in size, motile by a single polar flagellum. Colonies are circular and white-yellow on LB agar. No fluorescent pigments are produced on King B or PAF media. Catalase- and oxidase-positive. Strains show denitrification and hydrolysis of arginine. There is no hydrolysis of gelatin, Tween 80 or starch and no acidification of glucose is observed. Indole is not produced from tryptophan. Lecithinase, urease and β-galactosidase reactions are negative. Strains grow at 41°C but not at 4°C. Growth occurs in media supplemented with 3% NaCl, but not at a salinity higher than 5%. Results obtained with Biolog GN2 microplates indicate that strains utilize Tweens 40 and 80, α-D-glucose, methylpyruvate, monomethyl succinate, cis-aconitic acid, citric acid, formic acid, D-gluconic acid, α-hydroxybutyric acid, β-hydroxybutyric acid, p-hydroxyphenylacetic acid, itaconic acid, α-ketobutyric acid, α-ketovaleric acid, D-α-ketovaleric acid, DL-lactic acid, propionic acid, quinic acid, sebacic acid, succinic acid, bromosuccinic acid, alaninamide, D-alanine, L-alanine, L-alanyl glycine, L-asparagine, L-aspartic acid, L-glutamic acid, L-histidine, L-leucine, L-ornithine, L-proline, L-serine, L-threonine, DL-carnitine, urocanic acid, phenylethylamine, putrescine, 2-aminoethanol and glyceral. Utilization of acetic acid and hydroxy-L-proline is variable among strains. The other organic substrates included in the Biolog GN2 microplates are not utilized. The test using the API 20 NE strip shows that the strains assimilate glucose, gluconate, caprate, malate, citrate and phenylacetate. Accumulation of adipate is variable among strains. The strains do not assimilate arabinose, mannose, mannositol, N-acetylglucosamine or...
maltose. The G+C content of the DNA of strain Pss 26T is 66.9 mol%.
The type strain is strain Pss 26T (=KACC 10760T =LMG 21316T).

Acknowledgements
We thank Professor Hans G. Trüper for help with the nomenclature of
Pseudomonas species.

References
Achouak, W., Sutra, L., Heulin, T., Meyer, J.-M., Fromin, N.,
brassicaevarum sp. nov. and Pseudomonas thivervalensis sp. nov.,
two root-associated bacteria isolated from Brassica napus and Arabidopsis
Andersen, S. M., Johnsen, K., Sørensen, J., Nielsen, P. & Jacobsen,
C. S. (2000). Pseudomonas frederiksenii sp. nov., isolated from
Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of
Phylogenetic affiliation of the pseudomonads based on 16S rRNA
Ausbel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman,
Molecular Biology
The complete nucleotide sequence of a 16S ribosomal RNA gene from
Champion, A. B., Barrett, E. L., Palleroni, N. J., Soderberg, K. L.,
 Kunisawa, R., Contopoulou, R., Wilson, A. C. & Doudoroff, M.
(1980). Evolution in Pseudomonas fluorescens. J Gen Microbiol 120,
485–511.
Grimon, P. A. D., Popoff, M. Y., Grimont, F., Cynouault, C. & Lemelin,
M. (1980). Reproducibility and correlation study of three deoxy-
330.
In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N.
strains producing fluorescent pigment. Soil Sci Plant Nutr 29,
525–532.
the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44,
301–307.
evolutionary genetics analysis, version 1.0. University Park, PA:
Pennsylvania State University.
measurement of the G+C content of deoxyribonucleic acid by high-
Bakteriol Inst Karlsruhe 1, 235–238.
Moore, E. R. B., Mau, M., Arnscheidt, A., Böttger, E. C., Hutson,
R. A., Collins, M. D., Van de Peer, Y., De Wachter, R. & Timmis, K. N.
(1996). The determination and comparison of the 16S rDNA gene
sequences of species of the genus Pseudomonas (sensu stricto) and
estimation of the natural intrageneric relationships. Syst Appl
Microbiol 19, 478–492.
history in the taxonomy of gram-negative bacteria. Antonie van Leeuwenhoek 64,
231–251.
Deoxyribonucleic acid homologies among some Pseudomonas
Palleroni, N. J., Kunisawa, R., Contopoulou, R. & Doudoroff, M.
method for reconstructing phylogenetic trees. Mol Biol Evol 4,
406–425.
Taxonomy of phytopathogenic pseudomonads. J Bacteriol 101,
9–23.
among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans,
and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 35,
151–154.
microorganisms. I. Isolation and characterization of an isoprenoid-
degrading bacterium, Pseudomonas citronellolis n. sp. J Bacteriol 79,
426–434.
Pseudomonas kilonensis sp. nov., a bacterium isolated from agricultural
taxonomy of Pseudomonas based on published records of substrate
for DNA-DNA reassociation and 16S rRNA sequence analysis in
the present species definition in bacteriology. Int J Syst Bacteriol 44,
846–849.
The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43,
159–271.
Taxonomic study of bacteria isolated from natural mineral waters:
proposal of Pseudomonas jesenii sp. nov. and Pseudomonas mandelli
sp. nov. Syst Appl Microbiol 22, 45–58.
Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors.
ad hoc committee on reconciliation of approaches to bacterial
16S ribosomal DNA amplification for phylogenetic study. J Bacteriol
173, 697–703.