Thermanaeromonas toyohensis gen. nov., sp. nov., a novel thermophilic anaerobe isolated from a subterranean vein in the Toyoha Mines

Koji Mori,1 Satoshi Hanada,1 Akihiko Maruyama1 and Katsumi Marumo2

Author for correspondence: Satoshi Hanada. Tel: +81 298 61 6591. Fax: +81 298 61 6587.
E-mail: s-hanada@aist.go.jp

A novel thermophilic, strictly anaerobic, thiosulfate-reducing bacterium, designated strain ToBET, was isolated from a geothermal aquifer at a depth of 550 m in the Toyoha Mines (Hokkaido, Japan). The cells of this bacterium were rod-shaped (0.6 \times 2–6 \mu m), non-motile and sporulating. Strain ToBET was able to grow on formate, lactate, pyruvate or various sugars in the presence of thiosulfate as an electron acceptor. The strain could grow at 55–73 °C and pH 5.5–8.5. The optimum temperature and pH for the growth were 70 °C and pH 6.5. The G+C content of the DNA was 49.6 mol\%. The major quinone and cellular fatty acids were respectively menaquinone-7 and iso-C\textsubscript{15}:0 and iso-C\textsubscript{17}:0. Analysis of the 16S rDNA revealed that the isolate was a member of the Gram-positive bacteria and was related to the genus Thermoaerobacter. However, the phylogenetic tree showed that the strain was distant from any other known bacteria, with sequence similarities of less than 90%. On the basis of phenotypic features and phylogenetic analysis, the name Thermanaeromonas toyohensis gen. nov., sp. nov., is proposed for the isolate, with strain ToBET (= DSM 14490T = JCM 11376T) as the type strain.

Keywords: Thermanaeromonas toyohensis gen. nov., sp. nov., thermophile, anaerobe, subterranean

The deep subsurface is one of the major habitats for micro-organisms (Gold, 1992; Whitman et al., 1998). Over the past decade, a great deal of attention has been paid to the subsurface biosphere, since a large number of micro-organisms have been discovered in such environments. It was inferred by direct enumeration that \(3.8 \times 10^{20}\) micro-organisms inhabit the groundwater, unconsolidated sediments and pore spaces of the subsurface. This value is equivalent to approximately 95% of the total micro-organisms living on Earth (Whitman et al., 1998).

It has been demonstrated that methanogens (Kotelnikova et al., 1998; Nilsen & Torsvik, 1996; Ollivier et al., 1998), sulfate-reducing bacteria (Liu et al., 1997; Motamed & Pedersen, 1998) and acetogens (Davydovacharakhchyan et al., 1992) are present in the subterranean biosphere. These chemooautotrophic microbes probably play an important role as primary producers in this environment. Various heterotrophic bacteria also grow together with the autotrophs in this environment, and many researchers have reported their observations on and isolations of subterranean heterotrophic bacteria such as Thermoaerobacter and Thermotogales (Andrews & Patel, 1996; Cayol et al., 1995; Fardeau et al., 1997, 2000; Jeanthon et al., 1995; Ravot et al., 1995; Slobodkin et al., 1999; Stetter et al., 1993; Wynter et al., 1996). The bacteria isolated were generally thermophilic and some isolates were able to grow at up to 85 °C (Kim et al., 2001; Stetter et al., 1993).

Recently, we isolated a novel anaerobic, thermophilic, thiosulfate-reducing bacterium from geothermal water at Toyoha Mine (Hokkaido, Japan). Toyoha Mine is a Ag/Pb/Zn/Cu polymetallic vein-type deposit and the mineralization of the deposit occurred from 3 to 0.5 million years ago. Geothermal water was collected from cracks at 550 m below the land surface. The temperature and pH of the water were 71 °C and pH 5.8. The water seeped from the wall at a rate of 2 l min−1.
Fig. 1. Cell morphology of strain ToBET grown in AP4E medium (70 °C and pH 6.5). (a) Phase-contrast micrograph of strain ToBET. (b, c) Ultrathin sections of strain ToBET at late-exponential phase. Transmission electron microscopy (Hitachi model H-7000) was performed as described previously (Hattori et al., 2000).

For enrichment and isolation, we used AP4E medium containing (l-−)0–8 g Na\textsubscript{2}S\textsubscript{2}O\textsubscript{3}, 0.5 g glucose and 0.5 g Bacto yeast extract (Difco) in basal medium. The basal medium was composed of the following materials (l-−) 100g KH\textsubscript{2}PO\textsubscript{4}, 0.75 g K\textsubscript{2}HPO\textsubscript{4}, 0.78 g NH\textsubscript{4}Cl, 0.53 g NaHCO\textsubscript{3}, 5.0 g trisodium EDTA, 0.041 g FeSO\textsubscript{4} \cdot 7H\textsubscript{2}O, 0.011 g MgSO\textsubscript{4} \cdot 7H\textsubscript{2}O, 0.25 g CaCl\textsubscript{2} \cdot 2H\textsubscript{2}O, 0.029 g NaCl, 0.23 g trace element solution DSM 334 (DSMZ, 1993), 10 ml; vitamin solution DSM 141 (DSMZ, 1993), 10 ml. The medium was dispensed into vials and bottles and sealed with butyl-rubber stoppers and aluminium caps under a N\textsubscript{2}/CO\textsubscript{2} (4:1, v/v) atmosphere and autoclaved. Prior to inoculation, the medium was reduced with a sterile stock solution of cysteine hydrochloride (final concentration 0–5 g l−1). The pH of the medium was around 7.0. For primary enrichment, 2 ml inoculum (a hot water sample concentrated 200-fold with a centrifuge) was added to 20 ml AP4E medium. After incubation for 1 week at 70 °C under N\textsubscript{2}/CO\textsubscript{2}, significant growth of morphologically uniform microbes was observed, and the enrichment culture was transferred to the same medium five times. White colonies, approximately 1 mm in diameter, were formed on AP4E medium solidified with 0.6% (w/v) Gelrite and 10 mM MgCl\textsubscript{2} \cdot 6H\textsubscript{2}O (final concentrations) after 3 days incubation, and strain ToBET was isolated successfully.

Morphologically, cells of strain ToBET were straight rods (about 0.6 μm wide and 2–6 μm long) showing no motility (Fig. 1a). Although the Gram-reaction was negative, observation by transmission electron microscopy indicated that the isolate had a Gram-positive type of cell wall (Fig. 1b). Terminal endospores were often observed in the cells (Fig. 1c).

Strain ToBET was a strictly anaerobic bacterium, unable to grow under aerobic conditions. Temperature, pH and NaCl ranges for growth were determined using 25 ml Hungate tubes containing 10 ml AP4E medium (Hattori et al., 2000). The temperature for growth of strain ToBET at pH 7.0 ranged from 55 to 73 °C, with an optimum of 70 °C (Fig. 2a). The pH range for growth at 70 °C was 5.5–8.5 and optimum growth was observed at pH 6.5 (Fig. 2b). The isolate grew optimally with no added NaCl and growth did not occur above 1% (w/v) NaCl. Strain ToBET could not grow autotrophically with sulfate, sulfite, thiosulfate, elemental sulfur, nitrate, nitrite or Fe3+ under H\textsubscript{2}/CO\textsubscript{2}. Yeast extract and trypticase were not required for growth of strain ToBET. The doubling time under optimum growth conditions (70 °C, pH 6.5 and no addition of NaCl) was 6.4 h.

The utilization of substrates and electron acceptors was tested according to the methods of Hattori et al.
Thermanaeromonas toyohensis gen. nov., sp. nov.

Fig. 2. Effects of temperature (a) and pH (b) on growth of strain ToBE T. Specific growth rates were calculated as means from duplicate cultures in AP4E medium.

Fig. 3. Phylogenetic tree based on 16S rDNA sequences of strain ToBE T and its relatives. Bootstrap percentages are indicated at branch points. Accession numbers are shown in parentheses. Bar, 0.03 substitutions per compared nucleotide.

http://ijs.sgmjournals.org
An almost complete 16S rDNA sequence (Hattori et al., 1996; accession no. AB062280). Phylogenetic analysis based on the neighbour-joining method (Saitou & Nei, 1987; Thompson et al., 1994) demonstrated that strain ToBE^T was a member of the low-G + C group of the Gram-positive bacteria (Fig. 3). The phylogenetic tree indicated that the isolate was closely related to Ammonifex degensii, Carboxydibricharum pacificum and Thermoanaerobacter species, with a high bootstrap value (85±1%). However, 16S rDNA sequence similarities between strain ToBE^T and these related species were less than 90% (Table 1). These low values suggest that a new genus should be created for this isolate (Stackebrandt & Goebel, 1994).

There were obvious differences in phenotypic features between the novel isolate and related species. Two related species, *A. degensii* and *C. pacificum*, are chemolithotrophic bacteria (Table 1). *A. degensii* is able to grow on H₂/CO₂ as the sole energy and carbon source (Huber et al., 1996). *C. pacificum* has a peculiar metabolism for acquiring energy, by oxidation of CO (Sokolova et al., 2001). Strain ToBE^T did not show chemolithotrophic growth under any conditions that we tested. The lack of chemolithotrophy is a significant trait that differentiates the isolate from these two related species. Members of the remaining related genus, *Thermoanaerobacter*, are anaerobic, thermophilic, rod-shaped bacteria, isolated from freshwater environments, that use saccharides for fermentation or thiosulfate respiration (Ben-Bassat & Zeikus, 1981; Bonch-Osmolovskaya et al., 1997; Cook et al., 1996; Fardeau et al., 2000; Jin et al., 1988; Kozianowski et al., 1997; Larsen et al., 1997; Slobodkin et al., 1999; Wiegel & Ljungdahl, 1981; Wiegel et al., 1979; Xue et al., 2001; Zeikus et al., 1979). Strain ToBE^T resembled *Thermoanaerobacter* species in morphological and physiological respects. However, the genomic DNA G + C content of strain ToBE^T was 49.6 mol%, whereas those of the *Thermoanaerobacter* species are less than 41 mol% (Table 1). The isolate was able to grow on formate in the presence of thiosulfate, while all *Thermoanaerobacter* species, except *Thermoanaerobacter kivui*, are unable to use this substrate as an energy source. Lactose is a good substrate for growth of all *Thermoanaerobacter* species, but it could not support growth of the novel isolate. Although the novel isolate reduced nitrate and nitrite, reduction of nitrogen oxides is not observed in almost all *Thermoanaerobacter* species (the only exception was *Thermoanaerobacter yonseiensis*). These differences in characteristics sufficiently support the phylogenetically solitary position of strain ToBE^T, as inferred from the 16S rDNA comparison. On the basis of its physiological and phylogenetic findings, we propose a novel genus

Table 1. Comparison of properties among genera related to strain ToBE^T

<table>
<thead>
<tr>
<th>Character</th>
<th>Strain ToBE<sup>T</sup></th>
<th>A. degensii</th>
<th>C. pacificum</th>
<th>Thermoanaerobacter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphology</td>
<td>Rod</td>
<td>Rod</td>
<td>Rod (sometimes branching)</td>
<td>Rod</td>
</tr>
<tr>
<td>Cell size (µm)</td>
<td>0.6 x 2-6</td>
<td>0.6 x 2-8.5</td>
<td>0.3 x 4-10</td>
<td>0.4-0.8 x 1-10</td>
</tr>
<tr>
<td>Habit</td>
<td>Rod</td>
<td>Rod</td>
<td>Hot spring</td>
<td>Hot spring, oil well and lake</td>
</tr>
<tr>
<td>Temperature range for growth</td>
<td>55-73</td>
<td>57-77</td>
<td>50-80</td>
<td>35-85</td>
</tr>
<tr>
<td>(°C)</td>
<td>16S rDNA similarity to strain ToBE<sup>T</sup></td>
<td>(100)</td>
<td>870</td>
<td>89-1</td>
</tr>
<tr>
<td>DNA G + C content (mol%)</td>
<td>49.6</td>
<td>54</td>
<td>33</td>
<td>29-41</td>
</tr>
<tr>
<td>Spore formation</td>
<td>+</td>
<td>-</td>
<td>ND</td>
<td>+*</td>
</tr>
<tr>
<td>Chemolithotrophic growth</td>
<td>-</td>
<td>+†</td>
<td>+‡</td>
<td>-</td>
</tr>
<tr>
<td>Electron acceptors:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO<sub>4</sub><sup>-</sup></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SO<sub>2</sub><sup>-</sup></td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>S<sub>2</sub>O<sub>3</sub></td>
<td>+</td>
<td>-</td>
<td>ND</td>
<td>+*</td>
</tr>
<tr>
<td>S<sub>2</sub>O<sub>3</sub></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+*</td>
</tr>
<tr>
<td>Reduction of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO<sub>3</sub></td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>-*</td>
</tr>
<tr>
<td>NO<sub>2</sub></td>
<td>+</td>
<td>-</td>
<td>ND</td>
<td>-</td>
</tr>
</tbody>
</table>

* With some exceptions.
† With molecular hydrogen, nitrate is reduced to ammonium and sulfate or sulfur to hydrogen sulfide.
‡ Chemoautotrophic growth is observed on CO as the sole energy source.

minor component. The DNA G + C content (Mori et al., 2000) of strain ToBE^T was 49.6 mol%.

An almost complete 16S rDNA sequence (Hattori et al., 2000) was obtained for strain ToBE^T (accession no. AB062280). Phylogenetic analysis based on the neighbour-joining method (Saitou & Nei, 1987; Thompson et al., 1994) demonstrated that strain ToBE^T was a member of the low-G + C group of the Gram-positive bacteria (Fig. 3). The phylogenetic tree indicated that the isolate was closely related to Ammonifex degensii, Carboxydibricharum pacificum and Thermoanaerobacter species, with a high bootstrap value (85±1%). However, 16S rDNA sequence similarities between strain ToBE^T and these related species were less than 90% (Table 1). These low values suggest that a new genus should be created for this isolate (Stackebrandt & Goebel, 1994).
and species, *Thermanaeromonas toyohensis* gen. nov., sp. nov.

Strain ToBE\(^T\) was incapable of autotrophic growth on H\(_2\)/CO\(_2\), but was able to grow on formate as a sole energy and carbon source in the presence of thiosulfate as an electron acceptor. Formate, the simplest organic acid, is synthesized readily and abiotically under conditions of high temperature and pressure such as those found in subterranean environments. It was also reported that a significant amount of this organic acid is contained in mineral veins (0.08–4.06 µg of the total mineral deposit; Zeng & Liu, 2000). These facts suggest that the novel isolate can grow independently of other autotrophic micro-organisms in the subsurface. It is probable that strain ToBE\(^T\) plays a leading ecological role in the subterranean biosphere as a primary producer and supplies organic materials for neighbouring heterotrophic bacteria.

Description of Thermanaeromonas gen. nov.

Thermanaeromonas (Ther.man.aer.mo’nas. Gr. n. *thermos* hot; Gr. pref. *an* not; Gr. n. *aer* air; Gr. n. *monas* unit, monad; N.L. fem. *Thermanaeromonas* thermophilic, anaerobic monad).

Cells are rod-shaped. Gram reaction is negative, but cells possess a Gram-positive cell-wall structure. Non-motile and terminal endospores are formed. Strictly anaerobic and thermophilic. Temperature range for growth is 55–73 °C. Optimum growth conditions are neutral pH. Chemo-organotrophic. Thiosulfate is used as an electron acceptor for growth. Nitrate and nitrite are also reduced. MK-7 is the major quinone and MK-8 also occurs as a minor quinone. Major cellular fatty acids are iso-C\(_{13:0}\) and iso-C\(_{17:0}\). The genomic DNA G + C content of the type species is 49.6 mol% (as determined by HPLC). Phylogenetic position based on 16S rDNA is in the Gram-positive bacteria. The type species is *Thermanaeromonas toyohensis*.

Description of Thermanaeromonas toyohensis sp. nov.

Thermanaeromonas toyohensis (to.yo.hen’sis. N.L. adj. *toyohensis* from Toyoha, referring to its isolation from the Toyoha Mines).

Cells are straight, non-motile rods, about 0.6 µm width and 2–6 µm long, with rounded ends. In addition to the properties given in the description of the genus, the following properties are observed. Grows at 55–73 °C; optimum growth at 70 °C. The pH range for growth is 5.5–8.5, with optimum growth at pH 6.5. Growth does not occur above 1% NaCl. The doubling time is 6–4 h under optimum growth conditions. Thiosulfate is used as an electron acceptor, but sulfate, sulfite, elemental sulfur, iron(III) and fumarate are not. Nitrate and nitrite are reduced. Substrates utilized in the presence of thiosulfate include arabinose, cellobiose, fructose, glucose, inositol, maltose, mannose, sucrose, trehalose, xylose, yeast extract, formate, lactate and pyruvate. These substrates except for formate are also used for fermentation. No growth occurs with galactose, lactose, mannitol, melibiose, raffinose, rhamnose, starch, chitin, glycerogen, inulin, pectin, acetate, citrate, fumarate, malate, succinate or acetate + H\(_2\)/CO\(_2\). Autotrophic growth is not observed. The genomic DNA G + C content of the type species is 49.6 mol% (as determined by HPLC). Phylogenetic position based on 16S rDNA is in the Gram-positive bacteria. The type species is *Thermanaeromonas toyohensis*.

Acknowledgements

We thank Xian-Ying Meng (National Institute of Advanced Industrial Science and Technology) for operation of the electron microscope. The Ministry of Education, Science & Technology (MEST), Japan, funds this research through the Special Coordination Fund ‘Archaeal Park Project’: International Research Project on Interaction Between Sub-Vent Biosphere and Geo-Environments.

References

K. Mori and others

