Bartonella bovis Bermond et al. sp. nov. and Bartonella capreoli sp. nov., isolated from European ruminants

Delphine Bermond,1 Henri-Jean Boulouis,2 Rémy Heller,1 Guy Van Laere,2 Henri Monteil,1 Bruno B. Chomel,5 Anna Sander,6 Christoph Dehio4 and Yves Piémont1

Author for correspondence: Delphine Bermond. Tel: + 33 3 88 24 37 90. Fax: + 33 3 88 25 11 13. e-mail: delphine.bermond@medecine.u-strasbg.fr

Two novel species of Bartonella isolated from European ruminants are described. Bartonella capreoli sp. nov. was isolated from the blood of roe-deer (Capreolus capreolus) captured in Chizé, France. The type strain is IBS 193T (= CIP 106691T = CCUG 43827T). It is distinct from another European ruminant isolate that originated from a cow from a French herd of 430 dairy cattle. The latter isolate belongs to a novel species named Bartonella bovis Bermond et al. sp. nov. The type strain is strain 91-4T (= CIP 106692T = CCUG 43828T). The two bacteria appeared as small, fastidious, aerobic, oxidase-negative, Gram-negative rods. Their biochemical properties were similar to those of members of the genus Bartonella. The sequences of the 16S rRNA and citrate synthase genes obtained from the two type strains were highly related to sequences of the different Bartonella species. Hybridization values when testing type strains of recognized Bartonella species, obtained with the nuclease/trichloroacetic acid method, support the creation of two novel species.

Keywords: Bartonella capreoli, Bartonella bovis, ruminants, citrate synthase gene, 16S rDNA

INTRODUCTION

The bacteria belonging to the genus Bartonella are parasites of the red blood cells of wild and domestic mammals. These bacteria have been recovered, often in large numbers, from the blood of humans [Bartonella bacilliformis (Weinman, 1968), Bartonella quintana (Vinson & Fuller, 1961)], small woodland mammals [Bartonella vinsonii subsp. vinsonii (Baker, 1946), likely Bartonella elizabethae (Daly et al., 1993), Bartonella doshiae, Bartonella taylorii and Bartonella grahamii (Birtles et al., 1995), B. vinsonii subsp. arupensis (Welch et al., 1999; Hofmeister et al., 1998), Bartonella birtlesii (Bermond et al., 2000) and other unnamed species], rats [Bartonella tribocorum (Heller et al., 1998)], rabbits [Bartonella alsatica (Heller et al., 1999a)], domestic and free-ranging cats [Bartonella henselae (Regnery et al., 1992; Welch et al., 1992; Bass et al., 1997), Bartonella clarridgeiae (Lawson & Collins, 1996), Bartonella koehlerae (Droz et al., 1999)], roe-deer [Bartonella schoenbuchensis (Dehio et al., 2001)] and canids [B. vinsonii subsp. berkhoffii (Breitschwerdt et al., 1995)].

The bacteria are mainly transmitted by hematophagous arthropods, such as sandflies (mainly Lutzomyia verrucarum) for B. bacilliformis, body lice (Pediculus humanus var. corporis) for B. quintana and fleas (Ctenocephalides felis) for B. henselae. It is assumed that all Bartonella species are vector-borne (Breitschwerdt & Kordick, 2000). This assumption is based on the fact that blood is the natural habitat of all known Bartonella species and that, in wild ruminants, Bartonella strains have been isolated from roe-deer and DNA of Bartonella spp. has been detected in ticks collected on roe-deer in The Netherlands (Schouls et al., 1999; Bergmans, 1996). Many Bartonella species have been shown to be zoonotic. Identification of possible human infections requires specific diagnostic tools, such as serological testing or in vitro gene amplification. When investigating the distribution of
Bartonella species present in domestic and wild animals, we isolated Bartonella strains from cattle (Bos taurus) and roe-deer (Capreolus capreolus) (Chomel et al., 1999; Heller et al., 1999b). These bacteria could be potential zoonotic pathogens, as demonstrated recently for B. vinsonii subsp. berkhoffii, as humans could be exposed to blood during slaughter and evisceration of roe-deer and cattle. In this publication, we describe two novel Bartonella species from ruminants.

METHODS

Animals, blood sampling and culture conditions. In January 1996, 69 wild roe-deer were captured by a professional trapper in Chizé forest conservation hunting area (western France). In June 1998, blood samples were collected from 36 cows belonging to a herd of 430 dairy cattle located in Bissy, 50 km south of Paris, France. Blood samples (2 ml) from roe-deer were collected into lysis-centrifugation tubes (Wampole Laboratory). Blood samples (4 ml) from domestic cattle were collected into plastic 4 ml EDTA tubes (Becton Dickinson). These tubes were frozen at -80 °C and stored until tested. The cattle blood samples were thawed and submitted to electron microscopy as described previously (de Lamballerie et al., 1992).

Electron microscopy. Bacteria were grown on solid medium (Columbia base agar plates (Difco) containing 5% fresh Bovine blood) for 60 min. After centrifugation, the pellets were plated onto estic cattle were collected into plastic 4 ml EDTA tubes (Becton Dickinson). These tubes were frozen at -80 °C and submitted to electron microscopy as described previously (de Lamballerie et al., 1992). These bacteria could be exposed to blood during slaughter and evisceration of roe-deer and cattle. In this publication, we describe two novel Bartonella species from ruminants.

Electron microscopy. Bacteria were grown on solid medium and submitted to electron microscopy as described previously (Fusseneger et al., 1996). Briefly, bacteria were suspended in PBS (0.145 M NaCl, 0.15 M sodium phosphate), spread on a water surface and adsorbed to Formvar-coated nickel grids, stained with 1% (w/v) uranyl acetate and air-dried. Samples were examined with a Philips transmission electron microscope (roe-deer isolate) or a JEOl 100CX2 electron microscope (bovine isolate).

Biochemical analysis. The following biochemical assays were performed with diagnostic tablets (Rosco Diagnostica): Voges–Proskauer reaction, tributyrin hydrolysis, pyrazinamidase, proline aminopeptidase and trypsin-like activity. Preformed bacterial enzyme activity was tested using the MicroScan Rapid Anaerobe Panel (Dade International) according to the manufacturer’s instructions and as described previously (Birtles et al., 1995; Welch et al., 1993).

Amplification of 16S rRNA and citrate synthase genes. DNA was extracted from bacterial suspensions via the Chelex extraction technique (de Lamballerie et al., 1992). An approximately 1400 bp fragment of the 16S rRNA gene was amplified from the extracted DNA by using eubacterial universal primers specific for the 16S rRNA gene: P8 (5'-AGAGTTTGATCCTGGCTCAG-3') and Pe1544 (5'-AA- GGAGGTTGATCCAGCCGCA-3') (Heller et al., 1998). PCR amplification of a 1000 bp fragment of the citrate synthase gene was performed as described by Birtles & Raoul (1996) with two primers, CS.140f (5'-TTACTTATG-ATCCKGYYTTTA-3'), where K is an equimolar amount of G and T and Y is an equimolar amount of C and T) and BlCS.1137n (5'-AATGCAAAAAAGAACAGTAA- ACA-3'). Standard procedures were undertaken to prevent sample DNA cross-contamination (Kwok & Higuchi, 1989). Each set of reactions also included negative controls to evaluate the absence of cross-contamination between samples and previously amplified DNA or field samples. The presence and size of the desired amplicons were determined by electrophoresis on a 1.5% agarose gel, followed by ethidium bromide staining and visualization on a UV transilluminator.

Purification of the amplicons and DNA sequencing. The amplified fragments were purified by CHROMA SPIN columns (Clontech). Sequencing of the complete 16S rRNA gene was performed on the coding and complementary strands by using four primer pairs, 5'-labelled with fluorescein isothiocyanate (Eurogentec): P8 and Pe535 (5'-GTAT- TACCGCGGTGCTGGCA-3'), P515 (5'-GTGCCAG- CAGCGCGGTAAKAC-3') and Pe804 (5'-GAC-TACC- AGGGTATCTAATCC-3'), P784 (5'-GGAGGATGATAC- CTTGGTAGTGC-3') and Pc198 (5'-ACTTGAAGCTATCC- CCCACCTCC-3') and P1174 (5'-GAGGAAAGGTGGG- GATGACGTC-3') and Pe1544.

Sequencing of 310 nt from the 3’ end of the citrate synthase gene (gltA) was performed on the coding and complementary strands by using primers BlCS.1137n and BlCS.781p (5'-GGGACACAGCTCATGTTGGG-3'), 5'-labelled with fluorescein isothiocyanate.

Sequencing reactions were performed by using a SequiTHERM EXCEL II Long-Read DNA Sequencing kit-ALF (Epicentre Technologies), according to the manufacturer’s instructions. The sequences were obtained with an ALF DNA Sequencer (Pharmacia Biotech), according to the manufacturer’s instructions.

Analysis of sequence data and construction of a phylogenetic tree. The DNA sequences obtained were compared with sequences from other Bartonella species and other bacteria contained in the EMBL/GenBank database. The sequences were aligned by using the CLUSTAL method (Higgins & Sharp, 1988) with DNASTar software. Partial citrate synthase gene sequences were then aligned with each other and also with other partial citrate synthase genes of recognized Bartonella species by using the CLUSTAL X multiple sequence alignment program (Thompson et al., 1997). A total of 100 bootstrap samples for alignment was produced by using the program SEQBOOT from PHYLIP version 3.5 (Felsenstein, 1989) and a phylogenetic tree was inferred from each bootstrap sample by using parsimony (DNAPARS pro-
gram in PHYLIP). The resulting tree was combined to yield a consensus tree (CONSENSE program in PHYLIP). A matrix of evolutionary distances was also derived from each bootstrap alignment by using the DNADIST program in PHYLIP. A tree was inferred from the matrices by using the FITCH program in PHYLIP. The resulting tree was visualized to yield a consensus tree (CONSENSE program in PHYLIP).

DNA–DNA hybridization. DNA extraction and purification were performed as described previously (Riegel et al., 1994). DNA hybridizations between labelled DNA and unlabelled fragmented DNAs were performed at 58 ºC for 16 h in 0.42 M NaCl with the nuclease/trichloroacetic acid method as described previously (Grimont et al., 1980; Riegel et al., 1994).

Determination of the DNA base composition. The G + C content of the DNA was determined by the capillary electrophoresis method as described previously (Riegel et al., 1995).

Nucleotide sequence accession numbers. The EMBL/GenBank accession numbers for the 16S rRNA sequences used for sequence comparison were: *B. alsatica*, AJ002139; *B. bacilliformis*, M65249; *B. birtlesii*, AF204274; *B. claridgeiae*, X89208; *B. doshiae*, Z31351; *B. elizabethae*, L01260; *B. grahamii*, Z31349; *B. henselae* Houston-1T, M73229; *B. henselae* BA-TF, Z11684; *B. koehlerae*, AF76237; *B. quintana* Fuller3T, M11927; *B. taylorii*, Z31350; *B. tribocorum*, AJ003070; *B. vinsonii* subsp. *vinsonii*, L01259; *B. vinsonii* subsp. *berkhoffii*, L35052; *B. vinsonii* subsp. *arupensis*, U71322; *Escherichia coli*, Z83204; *Brucella abortus*, AF091354; *Agrobacterium tumefaciens*, M11223; *Bartonella* strain C7-rat, Z70004; *Bartonella* strain C5-rat, Z70008; *Bartonella* strain C4-phy, Z70007; *Bartonella* strain C1-phy, Z70006; *Bartonella* strain R-phy2, Z70001; *Bartonella* strain C4-phy1, Z70005; *B. weissii*, AF199502; *B. schoenbuchensis*, AJ278187. The EMBL/GenBank accession numbers for the citrate synthase gene sequences used for the sequence comparison are given in Fig. 2.

RESULTS AND DISCUSSION

Phenotypic characteristics

The two roe-deer isolates, IBS 193T and IBS 206, produced smooth colonies, 0.5–1.2 mm in diameter, with short, slender Gram-negative rods. Electron microscope examination with negative staining showed small bacilli with multiple unipolar flagella (Fig. 1a). The two roe-deer isolates tested were oxidase- and catalase-negative, had a negative Voges–Proskauer reaction and no urease activity and were able to hydrolyse trehalose, N-acetyl β-D-glucosaminide and bis-p-nitrophenyl phosphate. It had amino-acid arylamidase activity with the following amino acids: arginine, lysine (alkaline as well as acid), glycine, leucine, methionine, proline and tryptophan. This isolate had trypsin-like activity and glycylglycylarylamidase activity, but no pyrrolidonylarylamidase activity.

The bovine isolate, 91-4T, produced small colonies, 0.3–1.1 mm in diameter, with straight and slender Gram-negative bacilli. Electron microscope examination of a subculture of bovine isolate 91-4T with negative staining showed small bacilli without flagella (Fig. 1b). It was oxidase- and catalase-negative, had a negative Voges–Proskauer reaction and no urease activity and was able to hydrolyse trehalose, N-acetyl β-D-glucosaminide and bis-p-nitrophenyl phosphate. It had amino-acid arylamidase activity with the following amino acids: arginine, lysine (alkaline as well as acid), glycine, leucine, methionine, proline and tryptophan. This isolate had trypsin-like activity and glycylglycylarylamidase activity, but no pyrrolidonylarylamidase activity.

Genotypic characteristics

Genotypic characteristics of all *Bartonella* type strains and of several additional isolates (16S rRNA gene and 3′-end citrate synthase gene similarities and/or DNA–DNA hybridization and total DNA G + C content) are presented in Table 1.

16S rRNA gene sequence analysis

The roe-deer isolates IBS 193T and IBS 206 had identical 16S rRNA gene sequences, which differed slightly from the sequences of the bovine isolate 91-4T and the 15 *Bartonella* type strains. This 16S rRNA
Table 1. DNA–DNA hybridization and 16S rRNA and \(gltA \) gene similarity between strains IBS 193\(^T\) and 91-4\(^T\) and *Bartonella* species

Sequences compared contained 1390 bp (16S rRNA) and 310 bp (\(gltA \) 3’ end).

<table>
<thead>
<tr>
<th>Strain</th>
<th>G + C content (mol%) (^*)</th>
<th>Sequence similarity (%) to:</th>
<th>DNA–DNA hybridization (%) with:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Strain IBS 193(^T)</td>
<td>Strain 91-4(^T)</td>
</tr>
<tr>
<td>IBS 193(^T)</td>
<td>38</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>IBS 206</td>
<td>38</td>
<td>99.2</td>
<td>93.8</td>
</tr>
<tr>
<td>91-4(^T)</td>
<td>38</td>
<td>98.5</td>
<td>87.1</td>
</tr>
<tr>
<td>B. alsatica CIP 105477(^T)</td>
<td>37(^e)</td>
<td>97.8</td>
<td>90.4</td>
</tr>
<tr>
<td>B. bacilliformis ATCC 35685(^T)</td>
<td>NT</td>
<td>98.2</td>
<td>85.2</td>
</tr>
<tr>
<td>B. birtlesii CIP 106294(^T)</td>
<td>38(^e)</td>
<td>97.9</td>
<td>88.5</td>
</tr>
<tr>
<td>B. claridgeiae ATCC 51734(^T)</td>
<td>NT</td>
<td>98.9</td>
<td>86.6</td>
</tr>
<tr>
<td>B. doshiae NCTC 12862(^T)</td>
<td>41(^b)</td>
<td>98.0</td>
<td>87.6</td>
</tr>
<tr>
<td>B. elizabethae ATCC 49927(^T)</td>
<td>40(^e)</td>
<td>98.2</td>
<td>90.0</td>
</tr>
<tr>
<td>B. grahamii NCTC 12860(^T)</td>
<td>41(^b)</td>
<td>98.8</td>
<td>85.2</td>
</tr>
<tr>
<td>B. henselae ATCC 49882(^T)</td>
<td>41(^b)</td>
<td>99.4</td>
<td>86.6</td>
</tr>
<tr>
<td>B. koehlerae ATCC 700693(^T)</td>
<td>NT</td>
<td>98.2</td>
<td>85.6</td>
</tr>
<tr>
<td>B. quintana ATCC VR-358(^T)</td>
<td>40(^b)</td>
<td>98.8</td>
<td>86.5</td>
</tr>
<tr>
<td>B. taylorii NCTC 12861(^T)</td>
<td>41(^b)</td>
<td>97.7</td>
<td>88.5</td>
</tr>
<tr>
<td>B. tribocorum CIP 105476(^T)</td>
<td>38(^d)</td>
<td>98.0</td>
<td>88.0</td>
</tr>
<tr>
<td>B. vinsonii subsp. vinsonii ATCC VR-152(^T)</td>
<td>41(^a)</td>
<td>98.7</td>
<td>88.5</td>
</tr>
<tr>
<td>B. vinsonii subsp. arupensis ATCC 700727(^T)</td>
<td>41(^f)</td>
<td>98.5</td>
<td>85.6</td>
</tr>
<tr>
<td>‘B. weissii’</td>
<td>NT</td>
<td>99.2</td>
<td>93.8</td>
</tr>
<tr>
<td>B. schoenbuchensis DSM 13525(^T)</td>
<td>NT</td>
<td>99.4</td>
<td>98.1</td>
</tr>
</tbody>
</table>

\(^* \) Data not obtained in this study were taken from: \(a \), Daly *et al*. (1993); \(b \), Birtles *et al*. (1995); \(c \), Bermond *et al*. (2000); \(d \), Heller *et al*. (1998); \(e \), Heller *et al*. (1999a); \(f \), Welch *et al*. (1999).

NT, Not tested.
gene sequence was also different from that of all other isolates in the EMBL/GenBank database. The levels of similarity are presented in Table 1. For isolate IBS 193T, the most distant 16S rRNA gene sequence was B. taylorii, with 97.7% similarity. The species with the closest 16S rRNA gene sequences were B. kochlerae and B. schoenbuchensis (Dehio et al., 2001), both with 99.4% similarity, whereas the bovine isolate 91-4T and ‘B. weissii’ had 99.2% similarity (Table 1).

The bovine isolate 91-4T and the isolate ‘B. weissii’ had identical 16S rRNA gene sequences that differed from the 16S rRNA gene sequences of other Bartonella species contained in the EMBL/GenBank database. The isolates with the closest 16S rRNA gene sequences were B. kochlerae and B. schoenbuchensis, with 98.8 and 99.8% similarity. Furthermore, the bovine isolate 91-4T had 99.2% similarity to the roe-deer isolate IBS 193T (Table 1). The most distant 16S rRNA gene sequences within the genus Bartonella were those of B. tribocorum and B. taylorii, with 97.1 and 97.0% similarity (Table 1).

The 16S rRNA gene sequences of the roe-deer isolate IBS 193T and the bovine isolate 91-4T were respectively 94.1 and 93.9% similar to that of Brucella abortus and 92.0 and 91.8% similar to that of Agrobacterium tumefaciens DSM 30105 (data not shown).

DNA–DNA hybridization
DNA of the isolates IBS 193T, 91-4T and ‘B. weissii’ was labelled and hybridized against unlabelled DNA of roe-deer isolates IBS 206 and IBS 193T, bovine isolate 91-4T, North American cat isolate ‘B. weissii’ and 14 Bartonella type strains. The results are presented in Table 1.

Roe-deer isolate IBS 193T showed 90, 53 and 48% hybridization, respectively, with roe-deer isolate IBS 206, the type strain of B. schoenbuchensis and bovine isolate 91-4T and less than 40% hybridization with all other type strains of Bartonella species tested (Table 1).

Bovine isolate 91-4T exhibited 80, 45 and 45% hybridization, respectively, with the cat isolate ‘B. weissii’, B. schoenbuchensis and roe-deer isolate IBS 193T. It had less than 39% hybridization with all other type strains of Bartonella species tested (Table 1).

DNA of isolates IBS 193T, IBS 206 and 91-4T respectively presented 42, 44 and 82% hybridization with labelled DNA of the strain ‘B. weissii’ (data not shown).

Discussion of the taxonomic position of the novel isolates
Isolates IBS 193T, IBS 206 and 91-4T exhibited phenotypic characters that were characteristic of the genus Bartonella: they were all isolated from blood, they grew slowly (10 d for primary isolation and 6 d for subcultures), required CO₂ and produced small colonies on Columbia blood-agar plates.

Biochemical profiles cannot be used routinely for differentiation of Bartonella species because of their
Firstly, the strains isolated from blood of roe-deer, IBS (Birtles & Raoult, 1996). The genetic and phenotypic profiles (10077640).

The 16S rRNA gene sequences of isolates 91-4T, IBS 193T and IBS 206 were also highly related to the sequences of members of Bartonella, exhibiting 97–99.4% similarity. These results indicate that isolates IBS 193T, IBS 206 and 91-4T belong to the genus Bartonella, since the similarity of 16S rRNA gene sequences between type strains within the genus Bartonella was previously described to be in the range 97.5–99.3% (Birtles & Raoult, 1996). The genetic and phenotypic data provide sufficient evidence to classify these three isolates in the genus Bartonella.

Additional data were obtained from genetic analysis. Firstly, the strains isolated from blood of roe-deer, IBS 193T and IBS 206, had a unique and identical 16S rRNA gene sequence. Secondly, bovine isolate 91-4T had exactly the same 16S rRNA gene sequence as the cat isolate ‘B. weissii’.

On the basis of DNA–DNA hybridization, two novel species were identified, one from roe-deer and one from cattle. The two roe-deer isolates, IBS 193T and IBS 206, belonged to the same species, since they had more than 90% hybridization with each other. Strains of the novel species are different from the type strain of Bartonella schoenbuchensis, as hybridization with the latter was only 53%. Similarly, the French roe-deer isolate IBS 193T does not belong to the same species as the bovine isolate 91-4T, since the hybridization between them was 48%. These results indicate that strain IBS 193T belongs to a novel Bartonella species distinct from all previously described species and also distinct from Bartonella schoenbuchensis, according to previously established criteria (Stackebrandt & Goebel, 1994).

The bovine isolate 91-4T showed 45% hybridization with the roe-deer isolates IBS 193T and Bartonella schoenbuchensis, indicating that this isolate belonged to a species different from the known roe-deer isolates. However, isolate 91-4T had 80% DNA relatedness to the cat isolate ‘B. weissii’. These data indicated that the bovine isolate 91-4T and the cat isolate ‘B. weissii’ are closely related and belong to the same species, which is distinct from all those previously described and also distinct from the species isolated from roe-deer, according to previously established criteria (Stackebrandt & Goebel, 1994). ‘B. weissii’ has been isolated from a few cats in the USA. However, isolate 91-4T DNA has been detected in more than 35% of 36 French dairy cattle. It could be possible that ‘B. weissii’ resulted from a transfer from a bovine to a feline population. In support of this hypothesis, Chang et al. (2000) obtained bovine isolates from American herds, closely related to French isolate 91-4T, with a high prevalence of bacteraemia (49%).

The first report of the infection of cattle with a bacterium called ‘Bartonella bovis’ was made by Donatien & Lestoquard (1934), on the basis of microscopy examination of a stained blood smear. Similar descriptions were presented later from American cattle (Lotze & Yngist, 1942) and British cattle (Brocklesby, 1970); the bacteria observed were called ‘Haemobartonella bovis’ by the latter two groups of authors. The presence of ‘H. bovis’ in American or British cattle was associated with the isolation of strains of Theileria sp. or Anaplasm sp., two well-known agents of tick-borne infections.

The first report of cultivation of Bartonella species from free-ranging wild ruminants was made in Europe from the blood of French roe-deer (Heller et al., 1999b). Other isolates were later obtained from German roe-deer (Dehio et al., 2001) and also from wild and domestic ruminants from North America (Chomel et al., 1999; Chang et al., 2000) and domestic cattle in France (H.-J. Boulouis and others, unpublished data). Bartonella species are therefore frequently encountered in the blood of ruminants and can be transmitted to humans or various other animal species. Bartonella DNA was also detected in more than 70% of ticks collected from roe-deer in The Netherlands (Schouls et al., 1999; Bergmans, 1996).

Description of Bartonella capreoli sp. nov.

Bartonella capreoli (ca.pre.o’li. L. gen. n. capreoli of the roe-deer).

Colonies grown on blood agar appear homogeneous, round and grey–white. Electron microscope examination shows small bacilli with multiple unipolar flagella. Primary culture obtained after 10 d of incubation at 35 °C in a moist atmosphere containing 5% CO2. Subculture on agar obtained after 6 d under the same conditions. Gram-negative, oxidase- and catalase-negative, negative for Voges–Proskauer reaction, no urease activity and able to hydrolyse trehalose, N-acetyl β-D-glucosaminide and bis-p-nitrophenyl phosphate. Shows amino-acid arylamidase activity with the following amino acids: arginine, lysine (alkaline as well as acid), glycine, leucine, methionine, proline and tryptophan. Has trypsin-like activity and glycyglycylcyclylamidase activity, but no pyrroldonylarylamidase activity. Distinguished from the other Bartonella species by 16S rRNA and gltA gene sequences and by genomic DNA hybridization.

The type strain, IBS 193T (= CIP 106691T = CCUG 43827T), was isolated from the blood of a roe-deer (Capreolus capreolus). Its 16S rRNA gene sequence and partial 3´-end gltA gene sequence have been deposited in EMBL/GenBank under accession numbers AF293389 and AF293392.

Description of Bartonella bovis Bermond et al. non Donatien and Lestoquard 1934 sp. nov.

Bartonella bovis (bo’vis. L. gen. n. bovis of the ox).
This species is named Bartonella bovis Bermond et al. 2002 non Donatien and Lestoquard 1934 sp. nov. to distinguish it from the organism described as ‘Bartonella bovis’ by Donatien & Lestoquard (1934). The latter name did not appear in the Approved Lists of Bacterial Names (Skerman et al., 1980).

Primary culture obtained after 10 d of incubation at 35 °C in a moist atmosphere containing 5% CO₂. Subculture on agar obtained after 4 d of culture under the same conditions. Colonies grown on 5% rabbit blood agar appear homogeneous, round and grey–white. Electron microscope examination shows small bacilli without flagella. Gram-negative, oxidase-, and catalase-negative, with a negative Voges–Proskauer reaction and no urease activity. Able to hydrolyse trehalose, N-acetylβ-D-glucosaminide and bis-p-nitrophenyl phosphate. Exhibits amino-acid arylamidase activity with the following amino acids: arginine, lysine (alkaline as well as acid), glycine, leucine, methionine, proline and tryptophan. Has trypsin-like activity and glycylglycylarylaminidase activity, but no pyroglutamylarylaminidase activity. Distinguished from the other Bartonella species by 16S rRNA gene and gltA gene sequences and by genomic DNA hybridization.

The type strain is strain 91-4T (= CCUG 43828T), isolated from the blood of a domestic cow. Its 16S rRNA gene sequence and partial 3′-end gltA gene sequence have been deposited in EMBL/GenBank under accession numbers AF293391 and AF293394.

ACKNOWLEDGEMENTS

We thank Russell L. Reyn, who kindly provided the isolate ‘B. weissii’, and A. Bingen (Strasbourg) and Annie Alliot (UMR 956), for electron microscopy assistance. We are also grateful to François Lamarque from the Office National de la Chasse, who gave the authorization to catch roe-deer. Jeannine Durrenberger and Christine Fritsch are acknowledged for their skilful contributions. This work was supported by a 2-year grant from the French Programme de Recherche Fondamental en Microbiologie, Maladies Infectieuses et Parasitaires, 1998.

REFERENCES

D. Bermond and others

