Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes

Satoshi Hanada,1 Shinichi Takaichi,2 Katsumi Matsuura3 and Kazunori Nakamura1

Author for correspondence: Satoshi Hanada. Tel: +81 298 61 6590. Fax: +81 298 61 6587. e-mail: s-hanada@aist.go.jp

A novel thermophilic, photosynthetic bacterium, designated strain HLO8T, was isolated from a bacterial mat in a Japanese hot spring. Morphologically, the isolate was an unbranched multicellular filament with a cell diameter of 0.8–1.0 µm. The bacterium was red to reddish-brown in colour and formed a distinct red bacterial mat in the natural environment. It was able to grow phototrophically under anaerobic light conditions and also chemoheterotrophically under aerobic dark conditions. Optimal growth occurred at 50 °C and pH 7.5–8.0. The cells contained bacteriochlorophyll (Bchl) a and γ-carotene derivatives as photosynthetic pigments, but lacked Bchl c and chlorosomes. Cellular fatty acids in the isolate were mainly C16:0, C14:0 and C15:0. The major quinone was menaquinone-11. The DNA G+C content was 62.0 mol % (by HPLC). Phylogenetic analysis based on 16S rDNA sequencing suggested that the isolate belonged to the anoxygenic filamentous phototrophic bacteria represented by Chloroflexus aurantiacus, but was clearly distant from all members in this group (the sequence similarities between the isolate and its relatives were less than 83.8%). Based on genotypic and phenotypic data, the name Roseiflexus castenholzii gen. nov., sp. nov. is proposed for this isolate; the type strain is HLO8T (= DSM 13941T = JCM 11240T).

Keywords: Roseiflexus castenholzii, gen. nov., sp. nov., anoxygenic photosynthesis, thermophiles, bacterial mats, gliding motility

INTRODUCTION

The multicellular filamentous phototrophic bacterium Chloroflexus aurantiacus was first described by Pierson & Castenholz (1974). Since this bacterium differed from the classical photosynthetic bacteria in many respects at the time, a new family of phototrophic bacteria was created for it (the family Chloroflexaceae; Trüper, 1976). Phylogenetic analysis based on 16S rRNA gene sequence data revealed that the bacterium is not closely related to any other photosynthetic bacterium and forms the deepest branch among phototrophic bacteria (Oyaizu et al., 1987). The genus Chloroflexus, therefore, has received much attention as a key organism in considering the origin of photosynthesis and the evolutionary process of photosynthetic systems. Another species, Chloroflexus aggregans, has been described in this genus (Hanada et al., 1995).

The group represented by Chloroflexus aurantiacus was named the anoxygenic filamentous phototrophs (Pierson & Castenholz, 1995). This photosynthetic group includes some other genera: Oscillochloris (Keppen et al., 1994, 2000), Chloronema (Dubinina & Gorlenko, 1975) and Heliothrix (Pierson et al., 1985). In addition, several Chloroflexus-like bacteria have been observed in marine environments (Pierson et al., 1994). Filamentous morphology and gliding motility are typical of these phototrophic bacteria, most of which possess light-harvesting apparatus called chlorosomes, which are intracellular vesicles containing bacteriochlorophyll (Bchl) c or d. This notable photosynthetic apparatus is regarded as a typical...
feature in the anoxygenic filamentous phototrophs. An exception is Heliothrix oregonensis which has no chlorosomes. H. oregonensis is an interesting filamentous phototroph in that it contains Bchl a as the sole chlorophyll species, but has not been cultured axenically. This bacterium was described as a core-sult with the non-phototrophic bacterium, Iso-
sphaera pallida (Pierson et al., 1985).

For several years, distinct red-coloured bacterial mats consisting of filamentous phototrophic bacteria have been found in several neutral to alkaline hot springs in Japan. These filamentals contained Bchl a and some carotenoids as photopigments, but no Bchl ε has been detected. Morphological and spectroscopic features resembled those of H. oregonensis. Similar bacterial mats have also been observed in hot springs in Yellowstone National Park (Boomer et al., 2000; Pierson & Castenholz, 1995). However, filamentous bacteria like H. oregonensis have not been successfully isolated, despite of the endeavours of many researchers.

Recently, a distinct red-coloured bacterial mat de-
veloped in Nakabusa hot spring in Japan [M. Sugiu-
ra, M. Takano and K. Toda (all Nagoya University), S. Kawakami (Gifu University) and S. Hanada]. It was predominantly composed of a filamentous phototrophic bacterium containing Bchl a. The filamentous bacterium was isolated from the bacterial mat. The isolate, designated strain HLO8T, was a chlorosome-
less, gliding, filamentous, phototrophic bacterium resembling H. oregonensis. In this paper, the distinct properties of strain HLO8T are described and a new taxon is proposed for the isolate.

METHODS

Habitat and isolation. Strain HLO8T was isolated from a bacterial mat in Nakabusa hot spring (Nagano Pref., Japan). The bacterial mat was well developed on a concrete wall in the outflow from the spring. The temperature and pH ranges of hot water in the site were 40–60 °C and pH 7.8–8.2, respectively. The bacterial mat mainly consisted of three zonal layers predominantly formed by phototrophic bacteria. Each of the layers had a distinctive coloration (dark green, brown and red in colour). The surface of the mat was mainly occupied by dark green and brown coloured layers. The dark green layer was composed mainly of thermophilic cyanobacteria and the brown layer was due to Chloroflexus sp. In addition to these, there was a distinct red layer underneath the dark green and brown layers. The red layer was on the concrete wall with a thickness of less than 10 mm. The red layer was mainly composed of a filamentous phototrophic bacterium with a diameter of 1 μm. The red layer contained Bchl a and \(\gamma \) -carotene derivatives as photosynthetic pigments.

PE medium (Hanada et al., 1995) was used for isolation of strain HLO8T from the red layer. The red layer collected from the hot spring was gently homogenized and inoculated onto a 15% agar-containing PE plate (pH 8.0). The plate was incubated at 50 °C under anaerobic conditions in incandescent light (30 W m-2). Red to reddish-brown coloured colonies of strain HLO8T were formed on the plate after a few weeks. Enrichment of pure cultures was established using the same medium (pH 7.5) in screw-cap bottles at 50 °C under incandescent light (30 W m-2) or in flasks shaken vigorously (200 r.p.m.) in the dark at the same temperature. 0.2YE medium (pH 7.5) was also used to culture the strain. This medium contained (1L)-1: 0.2% yeast extract (Difco), 0.38 g K\textsubscript{2}HPO\textsubscript{4}, 0.39 g K\textsubscript{2}HPO\textsubscript{4}, 0.5 g (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4}, 1 ml vitamin mixture and 5 ml basal salt solution. The vitamin mixture and basal salt solution were the same as those used in PE medium (Hanada et al., 1995).

Morphology. The size, shape and ultrastructure of the cells were examined by phase-contrast microscopy and trans-
mision electron microscopy. For transmission electron microscopy, a centrifuged cell pellet was fixed with 5% (v/v) glutaraldehyde and 1% (v/v) osmium tetroxide. Ultra-thin sections of the sample embedded in epoxy resin (Kushida, 1980) were prepared with a Reichert ultra-microtome. Samples were stained with uranyl acetate and lead citrate, and examined using a Hitachi H-7000 transmission electron microscope. Gliding motility was determined by micro-
scopically observing 1-week-old colonies on an agar plate (PE medium, pH 7.5), ensuring that the tips of filaments glided out.

Nutritional and physiological tests. For nutritional tests, 5 ml medium containing one of various compounds as the sole carbon and energy source to a final concentration of 0.25% (w/v) was used in a multi-well plate (12 wells). The medium (pH 7.5) basically contained (1L)-1: 0.38 g K\textsubscript{2}HPO\textsubscript{4}, 0.39 g K\textsubscript{2}HPO\textsubscript{4} as a buffer, 0.5 g (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4} as a nitrogen source, 1 ml vitamin mixture and 5 ml basal salt solution (see above). The following 18 compounds were used for the test: aspartate, glutamate, glycine, acetate, butyrate, citrate, malate, pyruvate, succinate, glucose, mannose, ethanol, glycerol, lactate, methanol, mannitol, Casamino acids and yeast extract. All organic carbon sources were neutralized and sterilized before addition. Each plate was incubated at 50 °C under the following three conditions: anaerobically in the light, anaerobically in the dark and aerobically in the dark. Anaerobic conditions were achieved with an Aneropack system (Mitsubishi Gas Chemical). Photoautotrophic growth was tested with NaHCO\textsubscript{3} (50 mM) as a carbon source and Na\textsubscript{2}H\textsubscript{2}O (0.2 or 0.4 mM) or Na\textsubscript{2}SO\textsubscript{4} (3 mM) as electron donor. The results (OD at 660 nm) were recorded after 1 week incubation. For estimation of the optimal temperature range for growth, the isolate was aerobically cultured in PE medium (pH 7.5) at the following temperatures: 35, 40, 45, 50, 55, 60 and 65 °C. Growth at various pH values was also determined at 50 °C in PE medium that was buffered by 10 mM potassium phosphate buffer (pH 6, 7 and 8) or 10 mM sodium glycine buffer (pH 9 and 10).

Spectroscopy and pigment analyses. Cells were collected from 1-week-old cultures in 0.2YE medium and were washed and disrupted by sonication (140 W, 3 min) in potassium phosphate buffer (100 mM KCl, 3 mM KH\textsubscript{2}PO\textsubscript{4} and 2 mM K\textsubscript{2}HPO\textsubscript{4}, pH 7.0). Absorption spectra of ultrasonically disrupted cells and chloroform/methanol (2:1, v/v) extract were recorded with a Beckman DU 640 spectrophotometer. Pigments were extracted with acetone/methanol (7:2, v/v) and analysed by HPLC equipped with a μ Bondapak C18 column (8 × 100 mm, RCM type; Waters) with methanol as a mobile phase (Takaichi & Shimada, 1992).

Quinone and cellular fatty acid analyses. Quinones were extracted from freeze-dried cells with chloroform/methanol (2:1, v/v) and n-hexane. The extract was purified with a Sep-Pak Plus cartridge (Waters) and analysed by HPLC.
equipped with a Zorbax ODS column (4.6 × 250 mm; Shimadzu) for identification (Tamaoka et al., 1983).

Cellular fatty acids were converted to methyl esters by treatment with anhydrous methanolic HCl. The methyl esters were analysed with a Hitachi M7200A GC/3DQMS system equipped with a DB-5ms capillary column (30 m × 0.25 mm; J&W Scientific) coated with (5%-phenyl)-methylpolysiloxane (250 nm thickness). Helium was used as carrier gas at a flow rate of 1.5 ml min⁻¹. The column temperature profile was initially 100 °C for 1 min, then increased to 280 °C at a rate of 18 °C min⁻¹ and was finally held at 280 °C for 12 min.

DNA base composition and 16S rDNA analyses. The total DNA of strain HLO8ᵀ was extracted according to a previously described method (Kamagata & Mikami, 1991) and digested with P1 nuclease using a GC kit (Yamasa Shoyu). The G+C content was measured with a Shimadzu model LC-6A HPLC system equipped with a CLC-ODS column (6 × 150 mm; Shimadzu).

The 16S rRNA gene (16S rDNA) fragment was amplified by PCR (Hiraishi, 1992; Hiraishi et al., 1994) and sequenced directly with a dRhodamine dye terminator cycle sequencing kit (Applied Biosystems) and a model ABI 310 DNA sequencer. The obtained sequence and reference sequences were aligned and compared using the program **Clustal w**, version 1.6 (Thompson et al., 1994). The phylogenetic tree was constructed from the evolutionary distance matrix calculated by the neighbour-joining method (Saitou & Nei, 1987) with Kimura’s two-parameter (Kimura, 1980). Neighbour-joining analysis was performed with the **MEGA** program (Kumar et al., 1994). All gaps in the alignment were excluded to draw the tree.

RESULTS AND DISCUSSION

Morphology and photosynthetic pigments

The strain, designated strain HLO8ᵀ, was isolated from the red-coloured bacterial mat in Nakabusa hot spring (40–60 °C). Colonies of the isolate formed on 1.5% agar plates (PE medium) were red to reddish-brown in colour and showed gliding motility. The isolate was an unbranched multicellular filamentous bacterium of indefinite length with a diameter of 0.8–1.0 µm (Fig. 1, left). An electron micrograph of a thin section of the isolate revealed no evidence of intracellular vesicles or extensive internal membranes (Fig. 1, right).

Strain HLO8ᵀ produced Bchls and the photosynthetic apparatus both under aerobic and anaerobic conditions. *In vivo* absorption spectra of ultrasonically disrupted cells (Fig. 2) grown aerobically (solid line) and anaerobically (broken line) showed two peaks (at 801 and 878 nm) in the IR region that may be due to Bchl a. In addition, absorption maxima at 479 and

Fig. 1. Phase-contrast photomicrograph (left; bar, 10 µm) and electron micrograph of ultrathin section (right; bar, 0.5 µm) of strain HLO8ᵀ cells. Both cells were anaerobically grown in PE medium under incandescent light (30 W m⁻²) for 1 week.

Fig. 2. Absorption spectra of ultrasonically disrupted strain HLO8ᵀ cells grown under aerobic and dark (solid line) and anaerobic and light (broken line) conditions. The dotted line shows the spectrum of chloroform/methanol (2:1, v/v) extract of the phototrophically grown cells. Spectra were recorded after 1 week incubation in 02YE medium.
Table 1. Phenotypic characteristics of strain HLO8^T and related anoxygenic filamentous phototrophic bacteria

<table>
<thead>
<tr>
<th>Character</th>
<th>Strain HLO8<sup>T</sup></th>
<th>Chloroflexus spp.</th>
<th>O. trichoides</th>
<th>H. oregonensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphology</td>
<td>Multicellular filaments</td>
<td>Multicellular filaments</td>
<td>Multicellular filaments</td>
<td>Multicellular filaments</td>
</tr>
<tr>
<td>Cell diameter (µm)</td>
<td>0.8–1.0</td>
<td>0.5–1.5</td>
<td>1.0–1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Gliding motility</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Metabolism</td>
<td>Photoheterotroph,</td>
<td>Photoheterotroph,</td>
<td>Photoautotroph,</td>
<td>Photoheterotroph</td>
</tr>
<tr>
<td></td>
<td>O<sub>2</sub> respiration</td>
<td>photoautotroph,</td>
<td>photoheterotroph</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>O<sub>2</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimal growth temp. (°C)</td>
<td>50</td>
<td>55</td>
<td>28–30</td>
<td>40–55</td>
</tr>
<tr>
<td>Bchl<sub>a</sub></td>
<td>a</td>
<td>a, c</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Chlorosomes</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Peaks (nm) of in vivo</td>
<td>878, 801</td>
<td>868, 808, 740</td>
<td>852, 748</td>
<td>865, 795</td>
</tr>
<tr>
<td>spectrum (near IR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major cellular fatty acids</td>
<td>C16:0, C14:0, C15:0</td>
<td>C18:0, C16:0,</td>
<td>C18:1, C16:0,</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C16:0</td>
<td>C16:1</td>
<td></td>
</tr>
<tr>
<td>Major quinone</td>
<td>MK-11</td>
<td>MK-10</td>
<td>MK-10</td>
<td>ND</td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>62.0</td>
<td>56.7–57.1</td>
<td>59.2</td>
<td>ND</td>
</tr>
</tbody>
</table>

Symbols: +, positive; –, negative; ND, not determined. Data were taken from the following references: Chloroflexus spp., Pierson & Castenholz (1974) and Hanada et al. (1995); O. trichoides, Keppen et al. (2000); H. oregonensis, Pierson et al. (1984, 1985).

590 nm were observed, but both spectra lacked a peak around 740 nm (Bchl_c) that is typical of Chloroflexus species. The spectrum of the chloroform/methanol extract (dotted line; Fig. 2) indicated a peak at 770 nm of Bchl_a. No peak at 670 nm (due to Bchl_c) was found in the spectrum. Analysis of photopigments by HPLC clearly revealed the presence of Bchl_a and the absence of Bchl_c (data not shown). These findings suggest that the isolate has no chlorosomes (the light-harvesting apparatus containing Bchl_c).

In morphological and spectroscopic respects, the newly isolated phototrophic bacterium resembled other anoxygenic filamentous phototrophs, including Chloroflexus spp. and its relatives. However, the isolate lacked the light-harvesting apparatus (chlorosome), whereas almost all phototrophic members in the group, i.e. Chloroflexus spp. (Pierson & Castenholz, 1974; Hanada et al., 1995), Oscillochloris trichoides (Keppen et al., 2000) and Chloronema giganteum (Dubinina & Gorlenko, 1975; Gorlenko, 1988), possess it as a notable feature. H. oregonensis is the sole chlorosome-lacking phototroph in the group (Pierson et al., 1985). The new isolate, therefore, resembles H. oregonensis in lacking the distinct light-harvesting system. There is, however, an obvious difference in the absorption spectra of the near-IR region between the present isolate and H. oregonensis. The in vivo absorption spectrum of the isolate had distinct peaks at 878 and 801 nm due to Bchl_a probably bound to membranous proteins. Those of H. oregonensis were slightly blue-shifted (peaks were at 865 and 795 nm).

Strain HLO8^T also contained novel γ-carotene derivatives (including their glycoside esters) as the carotenoids (identification of these carotenoids is under way).

Physiological properties

Strain HLO8^T was able to grow photoheterotrophically under anaerobic conditions in the light and chemoheterotrophically under aerobic conditions in the dark. Yeast extract was a good substrate for growth under both aerobic and anaerobic conditions. Citrate, lactate, glucose and Casamino acids were utilized as a sole carbon source only under anaerobic light conditions; however, cell yields were clearly less than that obtained with yeast extract. The other simple organic compounds, i.e. acetate, butyrate, malate, pyruvate, succinate, aspartate, glutamate, glycine, mannose, ethanol, glycerol and mannitol, as sole energy sources did not support growth of the isolate under aerobic or anaerobic conditions. For determination of photoautotrophic growth with bicarbonate as sole carbon source, Na₂S · 9H₂O (0.2 or 0.4 mM) or Na₂S·O₃ (3 mM) were used as electron donors; the isolate did not show photoautotrophic ability under these conditions. No fermentative growth with glucose, yeast extract, Casamino acids or several other simple organic carbon sources was observed. Optimal growth occurred at 50 °C and at pH 7.5–8.0 under photoheterotrophic or chemoheterotrophic conditions. Good growth occurred at 45–55 °C. Growth did not occur above 60 °C and no practical growth was observed below 40 °C. The isolate grew between pH 6.0 and 9.0 and did not grow below pH 5.5 or above pH 9.5.
Roseiflexus castenholzii gen. nov., sp. nov.

Fig. 3. Phylogenetic tree showing the relationship between strain HLO8^T and related species based on their 16S rDNA sequence. Species given in bold represent members of the anoxygenic filamentous phototrophic bacteria. Bootstrap confidence values from 100 bootstrap replicates are indicated at the branching points. Bar, 4 nt substitutions in 100 nt in 16S rDNA sequences. The accession number of each reference species is shown in parentheses. OS Type C (indicated by an asterisk) is a clone sequence retrieved from bacterial mats in Yellowstone by Weller et al. (1992).

Other chemotaxonomic characteristics

The major quinones, composition of cellular fatty acids and genomic G+C content of the isolate were analysed. These results are summarized in Table 1, along with phenotypic characteristics of Chloroflexus species and its relatives. The predominant quinone of the isolate was menaquinone (MK)-11. Cellular fatty acids in the isolate were composed of C16:0 (69–5% of total fatty acids), C14:0 (19–9%), C15:0 (5–8%), C17:0 (1–8%), iso-C17:0 (1–6%), iso-C18:0 (0–8%) and iso-C16:0 (0–6%). Unsaturated fatty acids, e.g. C18:1, were not detected. The G+C content of strain HLO8^T determined by HPLC was 62–0 mol%.

Results of chemotaxonomic analyses also suggested differentiation of strain HLO8^T from related species (Table 1). The isolate contained MK-11 as the major quinone, whereas MK-10 was the predominant quinone in Chloroflexus spp. and O. trichoides. Cellular fatty acids of the isolate were entirely saturated, whereas the other members contained unsaturated fatty acids such as C18:1. The isolate also contained small amounts of iso-branched fatty acids that have not been detected in its relatives. The genomic G+C content of strain HLO8^T was 62–0 mol%, which was slightly higher than the G+C contents of its relatives (less than 60 mol% in Chloroflexus spp. and O. trichoides).

Phylogenetic position

Phylogenetic analysis based on 16S rDNA sequence showed that strain HLO8^T was related to the anoxygenic filamentous phototrophs (Fig. 3). The most closely related sequence to that of strain HLO8^T was that of ‘OS type C’, which was not a sequence of an isolated strain but a 16S rDNA clone retrieved from Octopus Spring in Yellowstone (Weller et al., 1992). The sequence similarity was significantly high (95.7%; the compared length was 1087 bp).

The position of the isolate was, however, certainly distant from other members of this group. The sequence similarities between the isolate and its related species were follows: Chloroflexus aurantiacus, 83–2% (the length compared in pairs was 1343 bp); Chloroflexus aggregans, 82–1% (1356 bp); O. trichoides, 83–8% (1375 bp); and H. oregonensis, 78–6% (868 bp). The sequence similarities to these authentic species were less than 83–2% and values were low enough for creation of a new genus for in this group (Stackebrandt & Goebel, 1994).

Several phenotypic properties of strain HLO8^T also supported the creation of a new taxon. There were obvious differences in in vivo spectra of the near-IR region between the present isolate and its relatives. The in vivo absorption spectrum of the isolate had distinct peaks at 878 and 801 nm due to Bchl_a, probably bound to membranous proteins. Peaks in the absorption spectrum of H. oregonensis were slightly blueshifted (peaks at 865 and 795 nm). In Chloroflexus spp., peaks were at 868 and 808 nm, with a prominent peak at 740 nm that was due to Bchl_c (chlorosome). O. trichoides had peaks at 852 and 748 nm caused by Bchl_a and Bchl_c, respectively. Chlorosomes in the genus Chloronema contained Bchl_d instead of Bchl_c and showed an absorption peak at 720 nm (data for the genus Chloronema not shown in Table 1; Dubinina & Gorlenko, 1975; Gorlenko, 1988).
The following phenotypic findings also suggested differentiating strain HLO\(^8\)\(^T\) from related species: (1) strain HLO\(^8\)\(^T\) contained no chlorosome, a typical feature of most *Chloroflexus* spp. and relatives; (2) the isolate contained MK-11 as a major quinone; (3) cellular fatty acids of the isolate were entirely saturated, whereas related species contained significant amounts of unsaturated fatty acids; (4) the genomic G + C content of the isolate was 62.0 mol%, which was slightly higher than values for related species (less than 60 mol%). Based on these genotypic and phenotypic characteristics, the name *Roseiflexus castenholzii* gen. nov., sp. nov. is proposed for the isolate.

Distribution of chlorosome-less anoxygenic filamentous phototrophic bacteria

Strain HLO\(^8\)\(^T\) formed a distinct red-coloured dense bacterial mat in the natural environment (Nakabusa hot spring in Japan). Similar red-coloured mats have been observed in other Japanese hot springs such as Meotobuchi (Tochigi Pref.; 57 °C, pH 6.8) and Atagawa (Shidzuoka Pref.; 44 °C, pH 8.0) hot springs. Both mats mainly consisted of filamentous bacteria like HLO\(^8\)\(^T\) and had the same spectroscopic properties, showing peaks at 878 and 801 nm in the IR region of their in vivo spectra and the absence of a peak around 740 nm (Bchl c). Morphological and spectroscopic properties suggest that HLO\(^8\)\(^T\) or a bacterium closely related to it also inhabit these two hot springs. Isolation of these strains is being attempted, but has not yet been achieved.

Boomer et al. (2000) recently reported on red-coloured mats in the alkaline hot springs of Yellowstone National Park. Filaments found in the mat were designated Rabbit Creek Red (RCR). The RCR filament seems to be similar to HLO\(^8\)\(^T\), but the following differences were noticed between these two bacteria: the diameter of the RCR filament was 1.0–1.5 µm, wider than that of HLO\(^8\)\(^T\); the cells of the filament were packed with stacked internal membranes; and the peaks in the IR region were clearly red-shifted (peaks at 913 and 807 nm). These differences suggest that the RCR filament is not the same species as HLO\(^8\)\(^T\), but a novel species related to it. The chlorosome-less, anoxygenic, filamentous, phototrophic bacteria, like HLO\(^8\)\(^T\), appear to be widespread in many hot springs in the world.

Description of *Roseiflexus* gen. nov.

Roseiflexus (ro.se.i.flex’us. L. adj. roseus rose-coloured; L. masc. n. flexus a bending, turning; N.L. masc. n. *Roseiflexus* rose-coloured bending).

Cells are unbranched, multicellular filaments showing gliding motility. Gram-negative. Bchl \(\alpha\) and \(\gamma\)-carotene derivatives are present. Chlorosomes and Bchl \(e\) are absent. Cultures are red to reddish-brown in colour. Thermophilic, facultative phototroph that grows at 45–55 °C and pH 7–9. Aerobic/dark growth occurs at full atmospheric oxygen tension. Neither photautotrophic nor fermentative growth is observed. Major quinone is MK-11. Cellular fatty acids are entirely saturated, e.g. C14:0, C15:0 and C16:0. DNA G + C content is 62.0 mol% (by HPLC). Phylogenetic position is in the green, non-sulfur bacteria represented by *Chloroflexus aurantiacus*. Type species is *Roseiflexus castenholzii*.

Description of *Roseiflexus castenholzii* sp. nov.

Roseiflexus castenholzii (cas.ten.holz’i.i. N.L. gen. n. castenholzii of Castenholz, named after Richard W. Castenholz, an American microbiologist who notably contributed to our knowledge of thermophilic filamentous phototrophs).

Basic phenotypic characteristics are the same as those described for the genus. Filamentous bacterium of indefinite length with a diameter of 0.8–1.0 µm. Neither chlorosomes nor intracytoplasmic membranes are present. Optimum photoheterotrophic and chemoheterotrophic growth occurs at 50 °C and pH 7.5–8.0. Yeast extract is a good carbon source for growth. Citrate and glucose are utilized as sole energy source only under phototrophic conditions. Photopigments are Bchl \(\alpha\) and \(\gamma\)-carotene derivatives; cell suspensions show absorption maxima at 479, 590, 801 and 878 nm. Pigmentation occurs under both aerobic and anaerobic conditions. Cellular fatty acids consist of C16:0 (69.5% total fatty acids), C14:0 (19.9%) and C15:0 (5.8%). Unsaturated fatty acids are not detected. Small amounts of iso-branched fatty acids are detected. Major quinone is MK-11. DNA G + C content is 62.0 mol% (by HPLC). Type strain is HLO\(^8\)\(^T\) (= DSM 13941\(^T\) = JCM 11240\(^T\)).

Note added in proof

The identification of the carotenoids of this organism will be reported elsewhere (Takaichi et al., 2002).

ACKNOWLEDGEMENTS

We are very grateful to Miwa Sugiyama, Masao Takano and Katsumi Toda in Nagoya University and Shin-ichi Kawakami in Gifu University for information on the red-coloured bacterial mat and for the joint field investigations at Nakabusa hot spring. We thank the following researchers in the National Institute of Bioscience and Human-Tech-nology: Xian Ying-Meng for transmission electron microscopy; Yasuyo Ashizawa for isoprenoid quinone and fatty acid analyses; Yoko Ueda for estimation of the DNA G + C content; and Aiko Sukegawa for cultivation of the strain. We also thank Richard W. Castenholz in University of Oregon for his critical reading of the manuscript.

REFERENCES

