Two haloalkaliphilic archaeal strains, X21T and C112T, were isolated from soda lakes in Inner Mongolia Autonomous Region, China. Their morphology, physiology, biochemical features, polar lipid composition and 16S rRNA genes were characterized in order to elucidate their taxonomy. According to these data, strains X21T and C112T belong to the genus *Natrialba*, although there are clear differences with respect to their physiology and polar lipid composition between the two strains and the type species, *Natrialba asiatica*. On the basis of low DNA–DNA hybridizations, these two strains should be considered as new species of genus *Natrialba*. The names *Natrialba hulunbeirensis* sp. nov. (type strain X21T = AS 1.1986T = JCM 10989T) and *Natrialba chahannaoensis* sp. nov. (type strain C112T = AS 1.1977T = JCM 10990T) are proposed.

Keywords: *Natrialba hulunbeirensis*, *Natrialba chahannaoensis*, archaea, haloalkaliphiles

INTRODUCTION

The family *Halobacteriaceae* was proposed by Gibbons (1974) to accommodate the rods and cocci that required high concentrations (more than 12%, w/v) of sodium chloride for growth, and included two genera, *Halobacterium* and *Halococcus*. The isolation of haloalkaliphilic and pleomorphic halobacteria necessitated the extension of this scheme to include six genera: *Halobacterium*, *Halococcus*, *Halocurta*, *Halofexa*, *Natriobacterium* and *Natronomonas* (Grant & Larsen, 1989; Torreblanca et al., 1986). Currently, members of the aerobic, extremely halophilic archaea are classified in 15 genera: *Halobacterium*, *Halococcus*, *Halocurta*, *Halofexa*, *Halorubrum*, *Halobaculum*, *Natrialba*, *Natronomonas*, *Natronomononas*, *Natronococcus*, *Halogemetricum*, *Natrinema*, *Haloterrigena*, *Natronorubrum* and *Halorhabdus* (McGenity & Grant, 1995; Oren et al., 1995; Kamekura & Dyall-Smith, 1995; Kamekura et al., 1997; Montalvo-Rodriguez et al., 1998; McGenity et al., 1998; Ventosa et al., 1999; Xu et al., 1999; Waino et al., 2000). Most halobacteria are neutrophilic, but some of these genera include species that are haloalkaliphilic, requiring not only high NaCl concentrations but also high pH and low Mg²⁺ concentrations for growth.

The phenotypic characteristics of haloalkaliphilic archaea that permit their differentiation are comparatively very limited, so it is relatively difficult to classify them on the basis of their phenotypic features alone. In addition, their phospholipid composition is highly conserved and glycolipids are absent from the majority of strains. Thus, chemotaxonomy on the basis of lipid composition is difficult. Therefore, in combination with other phenotypic features such as morphology, physiology and biochemistry, the phylogenetic inference of 16S rRNA sequences and DNA–DNA hybridization play important roles in the classification of haloalkaliphilic archaea. In 1997, the ICSB Subcommittee on the Taxonomy of Halobacteria proposed minimum standards for the classification of halobacterial archaea and suggested that the classification of halobacteria should be polyphasic and consistent with the phylogenetic analysis of 16S rRNA.
gene sequences (Oren et al., 1997). Recently, great progress has been made in the classification of haloalkaliphilic archaea: Kamemura et al. (1997) classified some species previously included in the genus Natronobacterium into three different genera: Natronomonas, Natrialba and Halorubrum. Additionally, Xu et al. (1999) proposed a new genus, Natriorubrum, with two new haloalkaliphilic species, Natronorubrum bangense and Natronorubrum tibetense.

In this study, we describe two novel soda lake isolates, X21T and C112T. We have determined the complete 16S rDNA sequences of these isolates, as well as their polar lipid compositions. In addition, we have performed DNA–DNA hybridization experiments with other members of the genus Natrialba in order to determine the taxonomic positions of strains X21T and C112T.

METHODS

Bacterial strains and culture conditions. Strain X21T was isolated by enrichment from a sediment sample (pH 10) collected from Chahannao soda lake in the Inner Mongolia Autonomous Region of China, whereas strain C112T was isolated from a sediment sample (pH 9.5) of an unnamed soda lake in the Hulunbeir prefecture of the Inner Mongolia Autonomous Region, China. The medium and methods for enrichment and isolation were described previously (Tindall et al., 1980). In addition, the following strains of the genus Natrialba were used in this study: Natrialba magadii NCIMB 2190T and Natrialba asiatica strains JCM 9576T and JCM 9577. These strains were cultivated aerobically at 37 °C as described previously (Tindall, 1992). The growth medium for the following studies contained (l−): 7.5 g Casamino acids (Difco), 10 g yeast extract (Difco), 30 g trisodium citrate, 0.3 g MgSO\textsubscript{4}·7H\textsubscript{2}O, 2.0 g KCl, traces of FeIII and MnII, 200 g NaCl and 8.0 g Na\textsubscript{2}CO\textsubscript{3}.

Phenotypic characterization. Phenotypic tests on strains X21T and C112T were carried out in accordance with the recommended standard methods for halobacteria (Oren et al., 1997). Cell motility and shape were examined by phase-contrast microscopy without fixation and by Gram staining with acetic acid fixation. The optimal conditions of growth, reduction of nitrate and utilization of different carbon sources were determined as described previously (Grant & Tindall, 1980; Mwatha & Grant, 1993). Tests for catalase and oxidase activities and hydrolysis of starch, gelatin, casein and Tween 80 were performed as described previously (Gonzalez et al., 1978). Antibiotic susceptibility and H\textsubscript{2}S production was tested as described previously (Colwell et al., 1979). Growth was monitored by turbidity at 660 nm.

Lipid composition. Total lipids were extracted and analysed on silica-gel plates (Kieselgel 60 F\textsubscript{254}, Merck) by one- and two-dimensional TLC (Ross et al., 1981; Ross, 1982). The core lipids were analysed by TLC, as described by Ross et al. (1981).

DNA base composition and DNA–DNA hybridization. Genomic DNA was prepared and purified as described previously (Zhou et al., 1994). The G+C content of the DNA was determined by the thermal denaturation method (Marmur & Doty, 1962). DNA–DNA hybridization was carried out as described by Tindall et al. (1984) with a minor modification: DNA fragments were labelled with [z-32P]dCTP using a nick-translation kit (Boehringer Mannheim).

16S rRNA gene sequence and phylogenetic analysis. The methods used for DNA preparation, PCR amplification of 16S rRNA genes and gene sequencing were described previously (Zhou et al., 1994).

Multiple sequence alignments were performed using CLUSTAL W version 1.8 (Thompson et al., 1994). Phylogenetic analysis of multiple sequence alignments was performed with TREECON W version 1.3b (Van de Peer & De Wachter, 1994). Phylogenetic tree construction was carried out by the neighbour-joining method with Kimura’s two-parameter calculation model in TREECON W version 1.3b.

RESULTS

Morphology

The two strains X21T and C112T were Gram-negative, rod-shaped and non-motile. Cells were 0.4–0.6 × 1–2.5 μm and lysed in distilled water. On agar plates, both strains formed red, circular and smooth colonies, 0.5 mm in diameter for strain X21T and 2.0 mm in diameter for strain C112T after 1 week at 37 °C.

Physiological characterization

Growth of both strains occurred in the pH range 8.5–10.5, with optimum growth at pH 9.0. Strain X21T grew in media containing between 12 and 30% (w/v) NaCl, with an optimum at 20% (w/v) NaCl. Strain C112T grew in media containing between 10 and 30% (w/v) NaCl, with an optimum at 15% (w/v) NaCl. Growth of both strains occurred in the temperature range 20–55 °C, with respective optima at 50 and 45 °C for strains X21T and C112T.

Both strains were catalase- and oxidase-positive and strictly aerobic. Both strains reduced nitrate to nitrite anaerobically and produced H\textsubscript{2}S from cysteine but not from Na\textsubscript{2}S\textsubscript{2}O\textsubscript{3}. They were sensitive to some antibiotics (such as erythromycin, rifampicin and bacitracin) but insensitive to tetracycline hydrochloride. Both strains hydrolysed gelatin and did not hydrolyse Tween 80. Strain X21T hydrolysed Tween 40 but did not hydrolyse starch or casein. Strain C112T hydrolysed starch and casein but did not hydrolyse Tween 40. Both strains utilized some sugars (fructose and maltose) and amino acids (asparagine, arginine and proline) as sole carbon sources for growth. They were unable to use sucrose, lactose, mannitol, serine, threonine or isoleucine. In addition, strain C112T utilized glucose, acetate and lysine as sole carbon sources for growth, but strain X21T did not. Acid production by both strains was observed from fructose and maltose, but not from glucose.

Polar lipids

Two-dimensional TLC revealed that the major polar lipids present in both strains were diphytanyl moieties (C\textsubscript{20}–C\textsubscript{20}) and phytanyl–sesterterpenyl moieties...
An unidentified polar lipid was present in strain X21, and lipids were not present. In addition, a minor amount of tetradglycerophosphate methyl ester (PGP-Me). Glycolipids were not present. In addition, a minor amount of an unidentified polar lipid was present in strain X21T.

16S rRNA gene sequence analysis

The almost complete sequences of the 16S rDNA from strains X21T and C112T, with respective lengths of 1472 and 1474 bp, were determined and compared to the sequences of the members of the genus Natrialba and other closely related halobacteria. Positions with any gaps and alignment uncertainty were omitted from the analysis. A total of 1376 unambiguous nucleotides were used for computing evolutionary distance. The phylogenetic tree (Fig. 1) indicated that the two strains were closely related to the species of the genus Natrialba. The DNA–DNA relatedness of the two strains (X21T and C112T) indicated that strains X21T and C112T had less than 92% sequence similarity to members of the other genera of aerobic extremely halophilic archaea. The phylogenetic placement of the two strains (Fig. 1) indicated that strains X21T and C112T were members of the genus Natrialba.

Fig. 1. Phylogenetic tree of Natrialba and related genera from their 16S rDNA sequences. The tree was constructed by the neighbour-joining method and Kimura’s two-parameter calculation model. Numbers represent confidence levels from 100 replicate bootstrap sampling. Bar, 0.05 expected changes per site.

DNA–DNA hybridization and G+C content of the DNA

The DNA–DNA relatedness of the two strains (X21T and C112T) to other described species of the genus Natrialba is shown in Table 1. DNA–DNA hybridization indicated that both strains (X21T and C112T) had low DNA relatedness to the other described species of Natrialba (3–37%) and, since the DNA hybridization was lower than 70% in all cases, strains X21T and C112T thus represent two distinct genospecies.

The G+C contents of the genomic DNAs from strains X21T and C112T were respectively 64.3 and 63.7 mol%, as determined by the thermal denaturation method.

DISCUSSION

Some decades ago, halobacterial taxonomy was based mainly on physiological and morphological features (Gibbons, 1974). In the 1980s, polar lipid composition and 16S rRNA–DNA hybridization proved particularly useful in the classification of halobacteria (Ross & Grant, 1985; Torreblanca et al., 1986), defining two additional genera (Haloarcula, Haloferax), but also indicating the need for further reclassification of some halobacterial species of uncertain taxonomic standing (Grant & Larsen, 1989; Ross & Grant, 1985). In recent years, more and more complete 16S rRNA gene sequences have become available for the halobacteria. Phylogenetic analysis of 16S rRNA gene sequences has now shown considerable taxonomic diversity within the family Halobacteriaceae (Kamekura & Dyall-Smith, 1995; McGerty & Grant, 1995; Duckworth et al., 1996) and, to date, 15 genera have been described, including a number of genera where representative strains are all haloalkaliphilic and others that include some haloalkaliphilic types.

Table 1. DNA–DNA hybridization between strains X21T and C112T and other type strains of species of the genus Natrialba

<table>
<thead>
<tr>
<th>Strain</th>
<th>X21T</th>
<th>C112T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain X21T</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Strain C112T</td>
<td>29</td>
<td>100</td>
</tr>
<tr>
<td>Natrialba magadii NCIMB 2190T</td>
<td>36</td>
<td>13</td>
</tr>
<tr>
<td>Natrialba asiatica JCM 9576T</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>† Natrialba wudunaoensis † Y21</td>
<td>26</td>
<td>37</td>
</tr>
</tbody>
</table>

Novel Natrialba species from Chinese soda lakes

International Journal of Systematic and Evolutionary Microbiology 51

1695

Downloaded from www.microbiologyresearch.org by IP: 54.70.40.11
On: Tue, 30 Jul 2019 17:12:38
A number of haloalkaliphiles have been isolated from soda lakes in the Inner Mongolia Autonomous Region of China, including strain Y21, which has been shown to be a species of *Natralba* (Wang et al., 2000), the strains described here, X21T and C112T, and some incompletely characterized strains, such as X213, C212 and Y212 (Wang & Tang, 1989). We now report the full characterization of the two strains X21T and C112T, which show features typical of the archaeal genus *Natralba* (Table 2). Our results show that both strains are typical members of the haloalkaliphilic archaia, growing optimally in the presence of 20% NaCl (w/v) at pH 9-0 and containing C_{20}-C_{28}/C_{20}-C_{22} diether core lipids of PG and PGP-Me. The genus *Natralba* contains non-alkaliphilic and alkaliphilic species and they have different polar lipid compositions. As shown in Table 2, there are two subgroups in the genus *Natralba*; members of one subgroup (*Natralba asiatica* JCM 9576T and JCM 9577) contain a glycolipid (2,6-HSO_3-Manp-\(\alpha\)(1 → 2)-GlcP-\(\alpha\)(1 → 1)-sn-glyceroldiether; \(\alpha\)_S-DGD-1) in addition to phospholipids (PG and PGP-Me), and members of the other subgroup (*Natralba magadii* NCIMB 2190T and our two isolates) contain only PG and PGP-Me. This feature would imply that the genus *Natralba* constitutes a heterogeneous group and it is not in accordance with the principles of polyphasic taxonomy (Grant & Larsen, 1989; Oren et al., 1997). Future studies should clarify the classification of the entire group.

The 16S rDNA sequences of the two strains (X21T and C112T) exhibited high levels of similarity to that of their closest counterpart, *‘Natralba wudhamaenos’* Y21 (98-9 and 99-2%, respectively), and also to that of *Natralba magadii* NCIMB 2190T (97-3 and 96-8%). Although the two strains possessed a close phylogenetic relationship to the members of the genus *Natralba*, the DNA–DNA relatedness was lower than 70% with previously described members of this genus, indicating that the two strains are genetically distinct from species described previously and should be classified as new species of the genus *Natralba*. With regard to the taxonomic position of the two new strains and *Natralba magadii* NCIMB 2190T, although they have a relatively close relationship to *Natralba asiatica* JCM 9576T (Fig. 1), it could be argued that these alkaliphilic halobacteria could be placed in a different genus because they have different polar lipid compositions and phenotypic characters from the type species of the genus, *Natralba asiatica*.

On the basis of the data described above, the two haloalkaliphilic archaia, strains X21T and C112T, represent new members of the genus *Natralba*, for which we propose the names *Natralba hulunbeirensis* sp. nov. (strain X21T) and *Natralba chahannaoensis* sp. nov. (strain C112T).

Description of *Natralba hulunbeirensis* sp. nov.

Natralba hulunbeirensis (hu.lun.bei.ren’sis. N.L. adj. hulunbeirensis of Hulunbeir, relating to the isolation of the organism from a soda lake of Hulunbeir prefecture, China).

Cells are rod-shaped, 0.4–0.6 × 1–2.5 μm, non-motile, uniformly stained Gram-negative, strictly aerobic and lysed in distilled water. Colonies are red, circular, smooth and 0.5 mm in diameter after 1 week of incubation. Growth occurs in media containing between 12 and 30% NaCl; optimum at 20% NaCl. The pH range for growth is 8.5–10.5, with an optimum at pH 9.0. The temperature range for growth is between 20 and 55 °C, with an optimum at 50 °C. Oxidase and catalase are positive. The following substrates are.

Table 2. Major features of strains X21T and C112T and species of the genus Natralba

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motility</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colony pigmentation</td>
<td>Red</td>
<td>Red</td>
<td>Orange-red</td>
<td>White</td>
<td>Pale-yellow</td>
<td>Red</td>
</tr>
<tr>
<td>NaCl concentration for growth (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimum</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td>24</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>Range</td>
<td>12-30</td>
<td>10-30</td>
<td>12-30</td>
<td>12-30</td>
<td>12-30</td>
<td>12-25</td>
</tr>
<tr>
<td>Optimum pH</td>
<td>90</td>
<td>90</td>
<td>95</td>
<td>66-70</td>
<td>73-8</td>
<td>9-0</td>
</tr>
<tr>
<td>H₂S production from cystine</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hydrolysis of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starch</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Casein</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fructose</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Malate</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acetate</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>DNA G + C content (mol%)</td>
<td>64-3</td>
<td>63-7</td>
<td>63-0</td>
<td>60-3-61</td>
<td>60-3-61</td>
<td>65-4</td>
</tr>
</tbody>
</table>

International Journal of Systematic and Evolutionary Microbiology 51

Downloaded from www.microbiologyresearch.org by IP: 54.70.40.11
On: Tue, 30 Jul 2019 17:12:38
utilized for growth: asparagine, arginine, proline, fructose and maltose. Serine, threonine, isoleucine, lysine, acetate, glucose, sucrose, lactose and mannitol are not utilized for growth. Starch, casein and Tween 80 are not hydrolysed. Gelatin is liquefied. Tween 40 is hydrolysed. H$_2$S is produced from cysteine but not from thiosulfate. Nitrate is reduced. Sensitive to erythromycin, bacitracin and rifampicin but not to tetracycline. The polar lipids are C$_{20}$-C$_{20}$ and C$_{20}$-C$_{25}$ derivatives of PG, PGP-Me and an uncharacterized minor polar lipid. The G+C content of the DNA is 64-3 mol% (T_m). Isolated from a soda lake in China. The type strain is strain X21T, deposited in the Academia Sinica, China General Microbiological Culture Collection as AS 1.1986T and as JCM 10989T.

Description of Natrialba chahannaoensis sp. nov.

Natrialba chahannaoensis (cha.han.nao.en’sis. N.L. adj. chahannaoensis of Chahannao, referring to its isolation from Chahannao soda lake, China).

Cells are rod-shaped, 0.4–0.6 x 1–2.5 μm, non-motile, uniformly stained Gram-negative, strictly aerobic and lysed in distilled water. Colonies are red, circular, smooth and 2–0 mm in diameter after 1 week of incubation. Growth occurs in media containing between 10 and 30% NaCl; optimum at 15% NaCl. The pH range for growth is 8.5–10.5, with an optimum at pH 9.0. The temperature range for growth is between 20 and 55°C, with an optimum at 45°C. Oxidase and catalase are positive. The following substrates are utilized for growth: asparagine, arginine, proline, lysine, glucose, fructose, maltose and acetate. Serine, threonine, isoleucine, sucrose, lactose and mannitol are not utilized for growth. Starch, casein and gelatin are hydrolysed. Tweens 40 and 80 are not hydrolysed. H$_2$S is produced from cysteine but not from thiosulfate. Nitrate is reduced. Sensitive to erythromycin, bacitracin and rifampicin but not to tetracycline. The polar lipids are C$_{20}$-C$_{20}$ and C$_{20}$-C$_{25}$ derivatives of PG and PGP-Me. The G+C content of the DNA is 63-7 mol% (T_m). Isolated from a soda lake in China. The type strain is strain C112T (= AS 1.1977T = JCM 10990T).

ACKNOWLEDGEMENTS

We thank M. Kamekura for his kind advice. This work was partially supported by a grant from the National Natural Science Foundation of China and a grant from the Chinese Academy of Sciences.

REFERENCES

International Journal of Systematic and Evolutionary Microbiology 51

