Re-evaluation of the classical *Mycoplasma lipophilum* cluster (Weisburg et al. 1989) and description of two new clusters in the hominis group based on 16S rDNA sequences

Bertil Pettersson, Joseph G. Tully, Göran Bölske and Karl-Erik Johansson

Author for correspondence: Bertil Pettersson. Tel: +46 8 790 82 87. Fax: +46 8 24 54 52. e-mail: bertil@biochem.kth.se

The *Mycoplasma lipophilum* cluster (Weisburg et al. 1989) in the hominis group of the mollicutes is re-evaluated in this work to update the phylogenetic framework for classification of species within the genus *Mycoplasma*. Therefore, sequences of the 16S rRNA gene were determined from previously described species, and 11 were found to be closely related to the *M. lipophilum* cluster. A selection of members of the other hitherto defined clusters of the hominis group was included for phylogenetic analysis, revealing that the classical *M. lipophilum* cluster could be re-organized into two clusters, namely the *M. lipophilum* cluster and the *Mycoplasma bovis* cluster. The former was found to contain two species, while the latter contained 20 species. The two clusters were closely related, sharing an ancestral branch with the *Mycoplasma synoviae* cluster. Furthermore, the *M. bovis* cluster could be divided into subclusters. Interestingly, two species, *Mycoplasma equigenitalium* and *Mycoplasma elephantis*, formed a distinct and early branch of the *M. lipophilum*, *M. bovis* and *M. synoviae* clusters. This entity was termed the *M. equigenitalium* cluster. The clusters and subclusters could be verified by using neighbour-joining and maximum-likelihood analyses on a variety of data sets, bootstrap calculations, secondary structure analysis and signature nucleotides. Therefore, the new 16S rDNA data presented in this work were used to re-evaluate the *M. lipophilum* cluster, leading to the definition of two additional clusters. At present, the mollicutes belonging to the hominis group can be classified into ten evolutionary lineages.

Keywords: 16S rRNA, hominis group, *Mollicutes, Mycoplasma lipophilum* cluster, phylogeny

INTRODUCTION

The class *Mollicutes* (trivial name mycoplasmas) evolved from the *Clostridium*–*Streptococcus*–*Lactobacillus* branch of the phylum harbouring Gram-positive organisms with a low G+C content in their genomes (Maniloff, 1992). A sparse array of biochemical features characterizes the mollicutes and the use of molecular data is important for taxonomic work on these micro-organisms (ICSB Subcommittee on the Taxonomy of Mollicutes, 1995; Heldtander et al., 1998; Lee et al., 1998; Pettersson et al., 2000; Weisburg et al., 1989). At present, the mollicutes contain five distinct phylogenetic groups, as revealed by analysing the primary structures of the 16S rRNA molecule (Weisburg et al., 1989). The major group is the so-called hominis group, which was named after the human mollicute *Mycoplasma hominis*. The hominis...
group has been subdivided into eight sublineages (clusters and branches containing single species) by Weisburg et al. (1989) and Pettersson et al. (1996, 2000).

Many species of the genus Mycoplasma have been described, primarily by serological methods, but without determining the actual evolutionary relationship to other mollicutes. The aim of the present study was to investigate the current status of the Mycoplasma lipophilum phylogenetic cluster based on 16S rRNA gene sequences. The following species of the genus Mycoplasma were sequenced and found to belong to the M. lipophilum cluster or to form a new cluster within the phylogenetic hominis group. Mycoplasma caviæ (G122T) was first isolated from different tissues of guinea pigs by Hill (1971). Although one strain of this species was associated with uterine infection, it is not known whether the species is pathogenic. Mycoplasma columbinasale (694T) was first isolated by Yoder & Hofstad (1964) from pigeon nasal turbinates and its taxonomic status was later established by Jordan et al. (1982). Mycoplasma columbinum (MMP-1T) was first isolated from the oropharynx and trachea of pigeons and described by Shimizu et al. (1978). Whether this organism is pathogenic has not been established. A collection of mycoplasmas isolated from the respiratory tract of chickens, all apparently non-pathogenic, was examined by Edward & Kanarek (1960) and designated as Mycoplasma iners. An almost complete 16S rRNA sequence has been deposited under the designation of the isolate associated with this sequence accession number AF064063. However, the strain taxonomic status was later established by Jordan et al. (1982). Mycoplasma lipophilicum (R171T) was first isolated from the infra-orbital sinus of a chicken and described by Bradbury et al. (1983). Again, pathogenicity has not been established. Mycoplasma maculosum was first isolated by Edward & Fitzgerald (1951) from the throat and genital tracts of dogs and designated as strain γ. Later, Edward & Freundt (1956) established its taxonomic status and designated PG15T as the type strain. Mycoplasma strains isolated from the canine throat and bladder by Armstrong et al. (1970) were characterized as members of a putative new species (canine serogroup D). Rosendal (1975) introduced a new species, Mycoplasma opalescens (MH5408T), collectively classifying these strains. The human Mycoplasma sp. strain Navel and related simian mycoplasmas were named Mycoplasma primatum by DelGiudice et al. (1971). The simian strain HRC292T was selected as the type strain. A partial 16S rRNA sequence (about 900 bp) of M. primatum strain Navel (not the type strain) has been deposited in GenBank by Rawadi et al. (1998). Mycoplasma spermophilum was isolated from sperm and cervical specimens of patients with infertility problems (Hill, 1991). A partial sequence of M. spermophilum strain AH159T (about 900 bp) has been deposited in GenBank by Rawadi et al. (1998). Mycoplasma strains isolated from the cervix of mares by Krabisch et al. (1973) were later classified as Mycoplasma equigenitalium (T37T) by Kirchhoff (1978). Mycoplasma elephantis (E42T) was first isolated from the genital tract of female elephants by Clark et al. (1978) and later characterized by Kirchhoff et al. (1996). Pathogenicity has not been established for either M. equigenitalium or M. elephantis.

The phylogenetic analysis presented in this work reveals that species showing close relationships to M. lipophilum can be grouped into new and revised clusters.

METHODS

Bacterial strains, growth conditions and preparation of genomic DNA. All strains sequenced in this study were obtained from the mycoplasma culture collection at the National Veterinary Institute in Uppsala, Sweden, from the former mycoplasma culture collection at the Mycoplasma Section of the National Institute of Allergy & Infectious Diseases in Frederick, MD, USA (Table 1). The mycoplasmas were grown in appropriate media as described previously (Bölö, 1988). The cells were washed three times in PBS and DNA was prepared by phenol–chloroform extraction according to standard procedures (Johansson et al., 1998b).

Determination of 16s rDNA sequences. Genomic DNA (10 ng) was used for amplification of virtually complete 16S rRNA genes with primers RIT593 and RIT620B. In order to increase yield and specificity, the PCR products obtained were subjected to two different semi-nested amplifications by using 1 μl of the product as template in the subsequent reactions. Primers RIT593 and RIT390B were used in one of the amplifications and RIT388 and RIT620B were used in the other semi-nested reaction. All PCR primers have been published previously (Pettersson et al., 1996). The first set covered the U1 to U5 regions (Gray et al., 1984) of the 16S rRNA gene and the second set defined the segment between the U2 and U8 regions. Biotinylated PCR products, suitable for solid-phase DNA sequencing, were generated with 10 pmol of each primer. The following thermo-cycling profile was used in all amplifications. Denaturation at 96 °C for 15 s and a combined primer annealing/extension step at 70 °C for 30 s was the standard cycle. A final extension at 72 °C for 10 min was used. One primer was biotinylated in each of the two sets in order to generate products suitable for solid-phase 16S rDNA sequencing. Immobilization of the biotinylated PCR products followed by strand separation and template preparation were performed with superparamagnetic beads (Dynabeads M-280 Streptavidin) according to the instructions of the manufacturer (Dynal AS). The nucleotide sequences from both strands were determined by direct solid-phase 16S rDNA sequencing using protocols and primers detailed previously (Johansson et al., 1998a; Pettersson et al., 1996).

Phylogenetic analysis. The sequences were aligned manually by using the Genetic Data Environment (GDE) software (Smith, 1992). A set of differently modified alignments was obtained by the removal of gaps and ambiguously aligned positions and by excluding positions that were less than 50% conserved. The non-corrected and corrected alignments were used to establish evolutionary relationships.

International Journal of Systematic and Evolutionary Microbiology 51
Re-evaluation of the *Mycoplasma lipophilum* cluster

Table 1 Species and strains belonging to the *M. bovis, M. lipophilum* and *M. equigenitalium* clusters

Sequences with the following accession numbers were also used in the phylogenetic analysis: *Candidatus Mycoplasma ravinpulmonis* (AF001173), *Mycoplasma agassizii* PS6 (U09786), *Mycoplasma alkalescens* D12\(^{T}\) (U44764), *Mycoplasma bovirhinis* PG43\(^{T}\) (U44767), *Mycoplasma conjunctivae* HRC581\(^{T}\) (U44770), *Mycoplasma felis* CO\(^{T}\) (U09787), *Mycoplasma gallinarum* DD\(^{T}\) (L24104), *Mycoplasma gyripis* B1/T1\(^{T}\) (AF125589), *M. hominis* PG21\(^{T}\) (A002265), *Mycoplasma hyorhinis* BTS7\(^{T}\) (M24658), *M. iowae* 69\(^{T}\) (M24293), *Mycoplasma mobile* mobile 163K\(^{T}\) (M24480), *M. mycoides* subsp. *mycoides* SC, PG1\(^{T}\) (U26038), *Mycoplasma neurolyticum* Type A\(^{T}\) (M23944), *Mycoplasma ovipneumoniae* Y98\(^{T}\) (U44771), *M. pneumoniae* FH\(^{T}\) (M29061), *Mycoplasma pulmonis* PG34\(^{T}\) (AF125582), *Mycoplasma salivarium* PG20\(^{T}\) (AF125583), *Mycoplasma sualvi* Mayfield B\(^{T}\) (M23936) and *M. synoviae* WVU 1853\(^{T}\) (L07757).

<table>
<thead>
<tr>
<th>Species and strain</th>
<th>Main host</th>
<th>Glu/Arg(^{a})</th>
<th>Accession no.(^{+})</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. adleri G-145(^{T})</td>
<td>Goat</td>
<td>–/–</td>
<td>U67943</td>
<td>Heldtander et al. (1998)</td>
</tr>
<tr>
<td>M. agalactiae PG2(^{T})</td>
<td>Goat, sheep</td>
<td>–/–</td>
<td>U44763</td>
<td>Petersson et al. (1996)</td>
</tr>
<tr>
<td>M. bovis Donetta(^{T})</td>
<td>Cattle</td>
<td>–/–</td>
<td>M24291</td>
<td>Weisburg et al. (1989)</td>
</tr>
<tr>
<td>M. bovis</td>
<td>Cattle</td>
<td>–/–</td>
<td>U44767</td>
<td>Petersson et al. (1996)</td>
</tr>
<tr>
<td>M. californicum ST-6(^{T})</td>
<td>Cattle</td>
<td>–/–</td>
<td>M24582</td>
<td>Weisburg et al. (1989)</td>
</tr>
<tr>
<td>M. caviae G122(^{T})</td>
<td>Guinea pig</td>
<td>+/–</td>
<td>AF221111</td>
<td>This study</td>
</tr>
<tr>
<td>M. columbinasale 694(^{T})</td>
<td>Bird (pigeon)</td>
<td>–/+</td>
<td>AF221112</td>
<td>This study</td>
</tr>
<tr>
<td>M. columbinum MMP-1(^{T})</td>
<td>Bird (pigeon)</td>
<td>–/+</td>
<td>AF221113</td>
<td>This study</td>
</tr>
<tr>
<td>M. felifaciunum PU(^{T})</td>
<td>Puma</td>
<td>–/–</td>
<td>U15795</td>
<td>Brown et al. (1995)</td>
</tr>
<tr>
<td>M. fermentans PG18(^{T})</td>
<td>Human, primate</td>
<td>+/–</td>
<td>M24289</td>
<td>Weisburg et al. (1989)</td>
</tr>
<tr>
<td>M. gallinarum PG16(^{T})</td>
<td>Bird (chicken, goose)</td>
<td>–/–</td>
<td>L24105</td>
<td>Boyle & Morrow (1994)</td>
</tr>
<tr>
<td>M. iners PG30(^{T}),</td>
<td>Bird (chicken)</td>
<td>–/+</td>
<td>AF221114</td>
<td>This study</td>
</tr>
<tr>
<td>M. leophasiens LL2(^{T})</td>
<td>Lion</td>
<td>–/–</td>
<td>U16760</td>
<td>Brown et al. (1995)</td>
</tr>
<tr>
<td>M. lipophicis R171(^{T})</td>
<td>Bird (chicken)</td>
<td>+/–</td>
<td>AF221115</td>
<td>This study</td>
</tr>
<tr>
<td>M. maculosum PG15(^{T})</td>
<td>Dog</td>
<td>–/+</td>
<td>AF221116</td>
<td>This study</td>
</tr>
<tr>
<td>M. meleagridis 17529(^{T})</td>
<td>Dog (turkey)</td>
<td>–/+</td>
<td>AF221117</td>
<td>This study</td>
</tr>
<tr>
<td>M. opalescentes MH5408(^{T})</td>
<td>Dog</td>
<td>–/+</td>
<td>AF221118</td>
<td>This study</td>
</tr>
<tr>
<td>M. primatum HRC292(^{T})</td>
<td>Human, primate</td>
<td>–/+</td>
<td>AF221119</td>
<td>This study</td>
</tr>
<tr>
<td>M. simiae LX(^{T})</td>
<td>Lion</td>
<td>–/+</td>
<td>U16323</td>
<td>Brown et al. (1995)</td>
</tr>
<tr>
<td>M. spermatophilum AH159(^{T})</td>
<td>Human</td>
<td>–/–</td>
<td>AF221120</td>
<td>This study</td>
</tr>
<tr>
<td>M. hyopharyngis H3-6BF(^{T})</td>
<td>Pig</td>
<td>–/+</td>
<td>U58997</td>
<td>Blank et al. (1996)</td>
</tr>
<tr>
<td>M. lipophilum MaBY(^{T})</td>
<td>Human, primate</td>
<td>–/+</td>
<td>M24581</td>
<td>Weisburg et al. (1989)</td>
</tr>
<tr>
<td>M. equigenitalium T37(^{T})</td>
<td>Horse</td>
<td>+/–</td>
<td>AF221121</td>
<td>This study</td>
</tr>
<tr>
<td>M. elephantis E42(^{T})</td>
<td>Elephant</td>
<td>+/–</td>
<td>AF221122</td>
<td>This study</td>
</tr>
</tbody>
</table>

\(^{a}\)Glu indicates glucose fermentation and Arg denotes arginine hydrolysis. +, Positive; –, negative.

\(^{+}\)Accession numbers in bold indicate almost-complete 16S rDNA sequences determined in this study.

\(^{\ddagger}\)A 16S rDNA sequence for *M. iners* was deposited in GenBank under the accession number AF064063. However, the strain designation was not available from this entry and the type strain was therefore resequenced in this work.

among the mollicutes investigated in this study. Phylogenetic calculations were performed by using algorithms implemented in the phylogenetic program package PHYLIP (Felsenstein, 1993). Infiles in the format compatible with that of PHYLIP were generated by using an option implemented in GDE. Both neighbour-joining (NJ) and maximum-likelihood (ML) programs were used to compute phylogenetic trees. Distances were corrected for multiple substitutions at single locations by the one-parameter model of Jukes & Cantor (1969) and statistical evaluation was performed by resampling the data 1000 times. The F84 evolutionary model with empirical nucleotide frequencies and a transition/transversion ratio set to 2:0 (Felsenstein, 1993) were used to calculate evolutionary trees by ML. The option for global rearrangement was invoked to find the best tree.

Nucleotide sequence accession numbers. The 16S rRNA gene sequences determined in this work have been deposited in GenBank. The accession numbers of these sequences and those retrieved for phylogenetic analysis are listed in Table 1.

RESULTS AND DISCUSSION

16S rDNA sequences

Primary structures of the 16S rRNA molecule were determined for 11 previously described species (Table 1). Almost complete sequences were generated, as determined for both strands. Polymorphisms in the two 16S rRNA genes were found in the following strains: *M. columbinum* MMP-1\(^{T}\), A/G\(^{_{(260)}}\); *M. caviae* G122\(^{T}\), A/G\(^{_{(260)}}\) and A/G\(^{_{(242)}}\); and *M. columbinasale* 694\(^{T}\), C/T\(^{_{(748)}}\) and C/T\(^{_{(1188)}}\) (according to *Escherichia coli* numbering; Brosius et al., 1978). The position in parentheses indicates that the corresponding position is absent from the 16S rRNA gene of *E. coli*. All
The inclusion of several mycoplasmas that have not
been previously classified phylogenetically indicated
that the classical *M. lipophilum* cluster should be
divided into two separate clusters. Consequently,
the revised *M. lipophilum* cluster contained only two
species, *M. lipophilum* and *Mycoplasma hyopharyngis,*
and this reduced cluster bisects the *Mycoplasma
synoviae* cluster and a clade that harbours 20 species,
including the bovine pathogen *Mycoplasma bovis* (Fig.
1). A third entity to be considered in this work was
found at the tip of an early branch of the *M. synoviae,*
M. lipophilum and *M. bovis* clades. This entity was
formed by *M. equigenitalium* strain T37T and *M.
elephantis* strain E42T; they showed a tight and distinct
clustering in all trees.

Convincingly, certain nucleotide positions in the 16S
rRNA gene (Table 2) supported the lines of the new
clusters. Moreover, a few of the positions were
regarded as signatures and are shown in bold in Table
2. A signature nucleotide in this context is a nucleotide
residue found explicitly in a certain position within the
sequences of the particular cluster, where the base that
is present differs from those found in the majority of
the other prokaryote taxa. The clusters could also
be defined by unique nucleotide positions in the
16S rRNA molecule (Table 2). The characterization of
a unique nucleotide feature was restricted to the
hominis group and/or the class *Mollicutes.* Thus, a
nucleotide residue at a certain position was said to be
unique when present in the molecules of all strains
within the particular cluster and absent, with no or
only a few exceptions, in the strains of any other cluster
or group of the mollicutes. These features are useful as
an aid in molecular phylogeny of the mollicutes for the
evaluation of the validity of the groups, clusters and
subclusters (Weisburg et al., 1989; Pettersson et al.,
2000). Therefore, discriminative nucleotide informa-
tion (detailed below) at defined positions further
justifies the introduction of two new clusters within the
hominis group. The two new phylogenetic clusters are
named according to the binomial nomenclature, ac-
quiring their epithets from a representative species in
the respective cluster, as suggested for classificatory
work based on molecular phylogeny of the mollicutes
(Weisburg et al., 1989; Pettersson et al., 2000).
Accordingly, the two new clusters will hereafter be
referred to as the *M. equigenitalium* cluster and the *M.
bovis* cluster, while the third lineage retains the name
the *M. lipophilum* cluster, as introduced previously by
Weisburg et al. (1989).

The statistical support and branch lengths suggested a
shared common ancestry of the *M. lipophilum,* *M.
bovis* and *M. synoviae* clusters (Pettersson et al., 1996),
as indicated in Fig. 1. Moreover, these clusters pos-
sessed an apomorphic homologous structural feature
between positions 722 and 723 (*E. coli*), with an
extension of two extra bases. This attribute is found in
the 16S rRNA molecule of neither the early branching
M. equigenitalium cluster nor other mollicute groups
or other taxa of the prokaryotes (Weisburg et al.,
1989; Pettersson et al., 1996). It is likely that this
idiosyncrasy was acquired somewhere on the ancestral
branch of the *M. lipophilum,* *M. bovis* and *M. synoviae*
clusters. The ancestral relationship was also reflected
by the presence of derived nucleotide characters that
were common to the three clusters, to the exclusion of

Phylogenetic analysis

The sequences determined in this work were aligned
with more than 300 other 16S rDNA sequences from
mollicutes. Phylogenetic trees were constructed with
all operational taxonomic units (OTUs) contained in
this alignment and the trees served as a guide for the
selection of appropriate OTUs for a more detailed
phylogenetic analysis of the *M. lipophilum* cluster.
Representative mycoplasmas from all other hitherto
defined clusters and lineages within the hominis group
were included for proper analysis of the evolutionary
relationships of the species studied in this work.

Mycoplasma pneumoniae strain FH7 and *Mycoplasma
iowae* strain 695T belong to the pneumoniae group
(Weisburg et al. 1989) and were included for com-
parison. The type species of the mollicutes, *Mycro-
plasma mycoides* subsp. *mycoides* SC strain PG1T,
which is positioned phylogenetically in the spiro-
plasma group, served as an outgroup in the tree.
Different criteria were applied in order to filter the data
set for nucleotide positions to be used for phylogenetic
analysis. By this procedure, subsets for final phylo-
genetic calculations were generated by removing gaps
and ambiguously aligned positions and by applying a
nucleotide consistency filter of 50 %, i.e. positions for
which a certain nucleotide composition could not be
observed in more than half of the sequences. The NJ
and ML algorithms were used to analyse the resulting
data sets and all trees showed overall agreement
concerning topology; a representative evolutionary
distance tree is displayed in Fig. 1. The tree was
computed from a data set from which only gaps were
removed, finally containing 1370 nucleotide positions.
Alternative reference and outgroup organisms did not
alter the topology of the tree significantly. The stability
of the tree was tested statistically by bootstrap analysis
and the percentage values as calculated from 1000
replicates are given at the individual nodes of the tree.

The cladistic procedure revealed that the species
studied in this work formed three distinct lines of
descent, including a splitting of the classical *M.
lipophilum* cluster (Weisburg et al., 1989) within the
hominis group (Fig. 1).

Phylogenetic considerations and nomenclature

The inclusion of several mycoplasmas that have not
previously been classified phylogenetically indicated
clearly that the classical *M. lipophilum* cluster should
be divided into two separate clusters. Consequently,
the revised *M. lipophilum* cluster contained only two
species, *M. lipophilum* and *Mycoplasma hyopharyngis,*...
Re-evaluation of the *Mycoplasma lipophilum* cluster

Fig. 1. Evolutionary distance tree based on 16S rRNA gene sequences, showing the representative phylogeny of the hominis group, but with emphasis on the *M. equigenitalium*, *M. lipophilum* and *M. bovis* clusters. The letters alongside vertical lines indicating subclusters of the *M. bovis* cluster correspond to the nomenclature used in the text and in Table 1. *M. mycoides* subsp. *mycoides* SC PG1T of the spiroplasma group served as the outgroup and *M. pneumoniae* FHT and *M. iowae* 695T, both belonging to the pneumoniae group of the mollicutes, were included for comparison. Bootstrap percentage values obtained from 1000 resamplings of the data set are given at the nodes. Clusters denoted in bold were introduced in this work and species in bold were sequenced in this work. The accession numbers of these sequences are given in Table 1. The scale bar shows a distance equivalent to 0.1 substitutions per nucleotide position.

most other mollicutes. Among these positions were for example the canonical base pairs U·A and A·U in positions 612–628 and 833–853 (to be detailed elsewhere). Thus, the tree is likely to reflect a true evolutionary linking of the *M. lipophilum*, *M. bovis* and *M. synoviae* clusters.

The *M. lipophilum* cluster

Previously, the classical *M. lipophilum* cluster contained 11 characterized species (Weisburg et al., 1989; Pettersson et al., 1996; Heldtander et al., 1998). In this study, the *M. lipophilum* cluster has been revised, now
Table 2 Unique and signature nucleotide positions in the 165 rRNA of the *M. equigenitalium*, *M. lipophilum* and *M. bovis* clusters

The numbers of particular positions correspond to those in the 16S rRNA molecule of *E. coli* (Brosius et al., 1978). Signatures are shown in bold; lower-case letters denote exceptions.

<table>
<thead>
<tr>
<th>Position of base or base pair</th>
<th>M. equigenitalium cluster</th>
<th>M. lipophilum cluster</th>
<th>M. bovis cluster</th>
<th>Hominis group</th>
<th>Mollicutes</th>
<th>Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>129·323</td>
<td>U·G</td>
<td>U·G</td>
<td>C·G</td>
<td>U·G</td>
<td>C·G, U·G</td>
<td>A·U: M. adleri, M. columbinasale.</td>
</tr>
<tr>
<td>147·175</td>
<td>G·C</td>
<td>A·U</td>
<td>G·C</td>
<td>C·G</td>
<td>G·C</td>
<td>A·U: M. fermentans</td>
</tr>
<tr>
<td>148·174</td>
<td>G·A</td>
<td>C·U</td>
<td>G·A</td>
<td>A·G, G·A</td>
<td>A·U: M. fermentans, M. bovigenitalium subcluster</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>G: haemotropic mycoplasmas</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>a, c, u</td>
<td>U: M. gallinarum</td>
<td></td>
</tr>
<tr>
<td>242·284</td>
<td>U·A</td>
<td>C·G</td>
<td>C·G</td>
<td>C·G, U·A, U·G</td>
<td>U·A: M. suavi, M. mobile</td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>U</td>
<td>U</td>
<td>C</td>
<td>A, c, U</td>
<td>A: M. lipofaciens, U: M. iners, M. gallinarum</td>
<td></td>
</tr>
<tr>
<td>293·304</td>
<td>G·C</td>
<td>G·U</td>
<td>G·U</td>
<td>A·U, G·C, G·U, U·A</td>
<td>U·A: M. agassizii, M. pulmonis, M. sturni</td>
<td></td>
</tr>
<tr>
<td>307</td>
<td>C</td>
<td>A, U</td>
<td>A</td>
<td>A, U</td>
<td>C: M. gypis</td>
<td></td>
</tr>
<tr>
<td>407·435</td>
<td>A·U</td>
<td>C·G</td>
<td>C·G</td>
<td>A·U</td>
<td>A·U: M. fermentans subcluster</td>
<td></td>
</tr>
<tr>
<td>408·434</td>
<td>A·U</td>
<td>C·G</td>
<td>C·G</td>
<td>A·U, G·C</td>
<td>C·G: Spiroplasma spp. (few)</td>
<td></td>
</tr>
<tr>
<td>409·433</td>
<td>C·G</td>
<td>U·G</td>
<td>G·C, G·C</td>
<td>C·G, G·C, U·A, U·G</td>
<td>U·G: M. auris, M. buccale</td>
<td></td>
</tr>
<tr>
<td>417·426</td>
<td>C·G</td>
<td>A·U, G·U</td>
<td>G·U</td>
<td>G·U, U·A</td>
<td>C·G: Acholeplasma modicum, Acholeplasma axanthum</td>
<td></td>
</tr>
<tr>
<td>446·488</td>
<td>A·U</td>
<td>G·C</td>
<td>G·C</td>
<td>A·U, G·C</td>
<td>A·U: M. gallinarum, U·G: M. opalescens</td>
<td></td>
</tr>
<tr>
<td>501·544</td>
<td>U·A</td>
<td>C·G</td>
<td>C·G</td>
<td>C·G, U·a, u·g</td>
<td>U·A: M. agassizii, U·G: Candidatus Mycoplasma ravinulmonis, M. ovipneumoniae</td>
<td></td>
</tr>
<tr>
<td>546</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>A·c</td>
<td>G: haemotropic mycoplasmas, mycoplasma-like organisms (some)</td>
<td></td>
</tr>
<tr>
<td>680·710</td>
<td>A·U</td>
<td>C·G</td>
<td>C·G</td>
<td>C·G, u·g</td>
<td>A·U: M. fastidiosum cluster, haemotropic mollicutes</td>
<td></td>
</tr>
<tr>
<td>771·808</td>
<td>G·C</td>
<td>A·U</td>
<td>G·C</td>
<td>G·C</td>
<td>A·U: mycoplasma-like organisms (few)</td>
<td></td>
</tr>
<tr>
<td>812</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>c·G</td>
<td>C: Candidatus M. ravinulmonis</td>
<td></td>
</tr>
<tr>
<td>893</td>
<td>U</td>
<td>U</td>
<td>C</td>
<td>C·U</td>
<td>U: Candidatus M. ravinulmonis</td>
<td></td>
</tr>
<tr>
<td>895·904</td>
<td>C·G</td>
<td>C·G</td>
<td>C·G</td>
<td>C·G, U·A</td>
<td>A·U: M. hominis, M. hyosynoviae</td>
<td></td>
</tr>
<tr>
<td>906</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>A·G: M. Californicum, C·U: M. simiae</td>
<td></td>
</tr>
<tr>
<td>930·1387</td>
<td>U·A</td>
<td>C·G</td>
<td>C·G, U·G·a</td>
<td>C·G, U·G</td>
<td>A·G: M. california, C·U: M. simiae</td>
<td></td>
</tr>
<tr>
<td>1048·1209</td>
<td>G·U</td>
<td>A·U</td>
<td>A·U</td>
<td>A·U</td>
<td>G·C</td>
<td></td>
</tr>
<tr>
<td>1120·1153</td>
<td>A·U</td>
<td>C·G</td>
<td>C·G, U·G·a</td>
<td>a·u, c·g, G·C, U·A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1124·1149</td>
<td>U·A</td>
<td>G·C</td>
<td>G·C</td>
<td>a·u, G·C</td>
<td>U·A: M. agassizii</td>
<td></td>
</tr>
<tr>
<td>1131</td>
<td>U</td>
<td>—</td>
<td>A</td>
<td>A, G, U</td>
<td>C·G: *M. spermatophilum, C·A: M. agassizii</td>
<td></td>
</tr>
<tr>
<td>1134</td>
<td>U</td>
<td>U·A</td>
<td>U·A</td>
<td>C·G, u·g</td>
<td>A·U: haemotropic mycoplasmas (few)</td>
<td></td>
</tr>
<tr>
<td>1424·1476</td>
<td>A·U</td>
<td>U·A</td>
<td>U·A, U·a·g</td>
<td>C·G, g·u, U·A, U·G·g</td>
<td>A·U: M. gypis, M. mobile</td>
<td></td>
</tr>
<tr>
<td>1436·1485</td>
<td>C·U</td>
<td>U·C</td>
<td>U·C</td>
<td>A·U, U·U·b</td>
<td>A·U, C·A, C·U, U·A</td>
<td></td>
</tr>
</tbody>
</table>

* Exceptions listed are those found among the members of the *M. bovis* cluster (a), the hominis group (b) or mollicute taxa not belonging to other mollicute groups (c).
harbouring only two species. The current members, *M. lipophilum* MaBy\(^T\) and *M. hyopharyngis* H3-6BF\(^T\), were 96.5\% similar in 16S rDNA sequence to each other, but only \(\approx 93.3\% \leq 91.7\%\) and \(\approx 88.8\% \leq 91.7\%\) similar to the neighbouring *M. bovis*, *M. synoviae* and *M. equigenitalium* clusters. It is notable that the value of \(\approx 93.3\% \leq 91.7\%\) similarity to the *M. bovis* cluster approached the lower limit of the intraspecies 16S rDNA percentage similarity found among the individual members of the *M. bovis* cluster (see below). Despite this, the *M. lipophilum* cluster can be regarded as a separate phylogenetic unit as judged by the evolutionary distance tree and the presence of sequence signatures (Fig. 1; Table 2). This observation underlines the importance of performing phylogenetic computations instead of relying entirely on results obtained by simple similarity-based methods such as BLAST, which might be misleading.

Besides a marked and stable clustering in all derived trees, there are also 16S rRNA gene sequence positions that are signatory for the *M. lipophilum* cluster (Table 2). Some compositions are found rarely in other bacterial phyla, such as the adjacently positioned base pairs A·U and C·U in positions 147·175 and 148·174. Exceptions to the former pair are found in the 16S rRNA molecules of six members of the *Flavobacterium–Cytophaga–Bacteroides* (FCB) phylum, including *Blattabacterium*. This composition is also present in *Petrobacteria miotherma*, *Fibrobacter succinogenes* and *Aeotrichalobum arubaticum*. In the *Archaea*, the residues A·U at 147·175 are found only in a few halophiles and in *Sulfolobus solfataricus* and *Sulfolobus shibatae*. The feature C·U at position 148·174 is found in *Mycoplasma fermentans* and the *Mycoplasma bovigenitalium* subcluster (this study), as well as in *Prevotella oralis* and *Isosphaera pallida* in the domain *Bacteria*. It can also be found in some members of the domain *Archaea*. These positions are therefore likely to constitute suitable targets for probe-based diagnostic assays of the *M. lipophilum* cluster. Another very rare feature is the base pair C·G at 408·434, which is shared only by a few bacterial taxa and by four spporplasmas among the mollicutes and occurs sparsely among the archaeeae. Furthermore, the *M. lipophilum* cluster has A·U at positions 771·808, shared with the order *Chlamydiales* and the genera *Acinetobacter*, *Nocardiosis*, *Arthrobacter* and their relatives (most), *Corynebacterium*, *Lactobacillus* (most), the *Actinomyces* group (most), *Actinopolyspora* and a few other members of the *Bacteria*.

A higher-order structural feature was identified for the *M. lipophilum* cluster, namely a truncation of position 1131. However, this one-base deletion is also present in some members of the \(\beta\)-Proteobacteria, some spiroplasmas and the *Clostridium leptum* subgroup. It nevertheless constitutes a rarely observed attribute in the 16S rRNA molecule. The members of the pneumoniae group and the *M. synoviae* cluster have deletions in this region of several base pairs. Moreover, *M. lipophilum* MaBy\(^T\) and *M. hyopharyngis* H3-6BF\(^T\) also share biochemical properties, in that both hydrolyse arginine but lack the ability to ferment glucose (Table 1).

The *M. bovis* cluster

The *M. bovis* cluster was found to contain 20 species, isolated from a variety of hosts (Table 1). Thus, this cluster is one of the largest entities of the hominis group, being about the size of the *M. hominis* cluster (Pettersson et al., 2000). The interspecies 16S rDNA similarities ranged between 91.9 and 99.5\%. Most of these values fell in the range 93–97\%, and only 9.5\% of all the calculated percentage values in the distance matrix (190 in total) of this cluster fell outside this range. Typically, the *M. bovis* cluster was \(\approx 92-2\%\) similar to the *M. synoviae* cluster and \(\approx 89-1\%\) similar to the *M. equigenitalium* cluster. Moreover, the *M. bovis* cluster could be divided further into a set of subclusters (detailed below), indicated in Fig. 1.

A sequence attribute, an adenine residue, at position 906 can be found in other bacterial divisions, but occurs rarely among the Gram-positives with low G+C content in their genomes. Therefore, this residue is shown in bold face, despite not having the status of a true signature.

All members of the *M. bovis* cluster, except *Mycoplasma californicum*, were found to have an extra nucleotide between positions 419 and 420. This extra base will lead to the formation of a C·G base pair, thereby engaging the fourth nucleotide of the loop, starting at position 420. The stem of this helix in the *M. bovis* cluster is therefore one base pair longer, due to a reduction of the tetra-loop found normally in this helix to a tri-loop. *Mycoplasma meleagridis* is characterized by having a non-canonical pair of the U·G type in the particular region of the 16S rRNA molecule. Members of the FCB phylum, the *Mycoplasma fastidiosum* cluster and ureaplasmas of the pneumoniae group of the mollicutes also have a tri-loop in this part of the molecule.

The *M. equigenitalium* cluster

The two members of this cluster, *M. equigenitalium* strain T37\(^T\) and *M. elephantis* strain E42\(^T\), were found to be closely related, with a 16S rDNA similarity of 99.1\%. *M. elephantis* and *M. equigenitalium* showed a distinct line of descent, sharing a common ancestral node with members of the *M. lipophilum*, *M. bovis* and *M. synoviae* clusters. Generally, the *M. equigenitalium* cluster was \(< 90\%\) similar to any other cluster or lineage within the hominis group, and its distinct position was justified from both the tree (Fig. 1) and nucleotide features (Table 2). A few of these were characterized as signatory for this cluster. One was observed to be the base pair C·G at 417·426, with only a few exceptions within the bacterial divisions such as the early bacterial lines *Aquificales* and...
Thermotogales, the genera *Thermus* and * Fibrobacter* and some environmental clones, *Campylobacter* and relatives and the subgroup of *Thermoanaeobacterium*. Members of the *Archaea* have depletions in this region. The composition U·A at 930–1387 can be observed in subgroups of the FCB division, the spirochaete genus *Leptospira*, the *Rickettsia* and *Orientia* subgroups of the *ß-Proteobacteria* and the *Calytogen* symbionts belonging to the *Thiotrix nivea* subgroup of the *ß-Proteobacteria*. Despite these exceptions, this feature is observed rarely in the domain *Bacteria*. A third attribute, the base pair A–U at positions 1424–1476, was observed in the *Trebrenoma pallidum* subgroup, the genus *Colwellia*, *Helicobacter* and relatives, the *Campylobacter fetus* subgroup (Aero- bacter and Sulfurosirillum) and the *Haloanaerobium* group. Two additional clusters also shared this composition, namely the *Acetohalobium arabicum* and *Alloiococcus otitis* subgroups (three and two species, respectively).

Subclusters within the *M. bovis* cluster

In general, the members of the *M. bovis* cluster showed a repeatedly stable topology in the different calculated phylogenies, which allows for the definition of subclusters (Fig. 1). Also, the subclusters were supported by high bootstrap percentage values of over 80%. Nucleotide features that justify this fine-tuned classification, at least to a certain extent, have been compiled in Table 3. However, we believe that these subclusters should be regarded as tentative, because some of the subclusters predicted here might be destabilised as more taxa are added to the *M. bovis* cluster in future, with the need to re-evaluate them. Nevertheless, they will facilitate work significantly on the classification of organisms that are phylogenetically related to members of the *M. bovis* cluster. A short presentation, with the actual names of the subclusters and lines within the *M. bovis* cluster, follows below and the letter codes given in parentheses are the same as those used in Fig. 1 and Table 3. The names of the subclusters have been introduced by following the previously outlined scheme for phylogenetic grouping of the mycoplasmas by using binomial epithets (Pettersson et al., 2000).

Species *M. opalescens (a), M. spermatophilum (f) and M. lipofaciens (h).* The species *M. opalescens* MH5408T, *M. spermatophilum* AH159T and *M. lipofaciens* R171T did not cluster specifically with any other species in the *M. bovis* cluster and are defined as constituting single-species lines of descent. These species showed 16S rDNA similarity of ≤96.2% to each other or to any species of the other subclusters of the *M. bovis* cluster.

The Mycoplasma leopharyngis subcluster (b). The *M. leopharyngis* subcluster was supported by a bootstrap value of 100%, containing *M. leopharyngis* LL2T and *M. maculosum* PG15T. They were 99.5% similar at the 16S rDNA sequence level and shared biochemical properties to some extent, in that both mycoplasmas do not ferment glucose (Table 1).

The Mycoplasma felisfauca subcluster (c). This entity harboured *M. felifaucium* PU1T and *Mycoplasma adleri* G-145T, with a statistical bootstrap support of 100%. They were 97.7% similar at the 16S rDNA sequence level and shared biochemical properties (Table 1).

The *M. bovis* subcluster (d). Three species formed the *M. bovis* subcluster, namely, *M. bovis* DonettaT, *Mycoplasma agalactiae* PG2T and *M. primatum* HRC 292T. The 16S rRNA similarity ranged between 97.7 and 99.0% and all species are incapable of fermenting glucose (Table 1). They grouped together in 100% of the consensus and majority trees. Strikingly, this entity also showed a higher-order structural attribute in the 16S rRNA molecule, the insertion of a purine between positions 197 and 198 (*E. coli*). This feature is not present in other mollicutes (except *M. hypharyngis*) or prokaryotes, thus being idiosyncratic for the *M. bovis* subcluster.

The *M. fermentans* subcluster (e). *M. fermentans* PG18T and *M. caviae* GI22T were constituents of the *M. fermentans* subcluster, grouping together with a bootstrap value of 100%. Both species ferment glucose and their 16S rRNA gene sequences were 98.8% similar.

The *M. iners* subcluster (g). With its five members, the *M. iners* subcluster was the largest phylogenetic subcluster in the *M. bovis* cluster. The members were *M. iners* PG30T, *Mycoplasma gallinarum* PG16T, *M. meleagridis* 17529T, *M. columbinesale* 694T and *M. columbinum* MMP-1T. This clade was formed in as many as 80% of all trees that were obtained by 1000 resamplings of the data set. They only shared 16S rDNA similarities ranging between 94.0 and 96.4%. These relatively low values suggest that they are separate species, without the need for the final justification of this status by performing DNA–DNA reassociation experiments (Stackebrandt & Goebel, 1994). Phenotypically, all species are united by their capacity to hydrolyse arginine and their inability to ferment glucose. Interestingly, this was the only subcluster that shared the same group of hosts, i.e. all are of avian origin (Table 1).

The *M. bovigenitalium* subcluster (i). *M. bovigenitalium* PG11T, *M. californicum* ST-6T and *Mycoplasma simhae* LX1T belonged to an entity that was termed the *M. bovigenitalium* subcluster. The primary structures of their 16S rRNA genes were 96.0–97.4% similar to each other. The branch of this clade was the most distinct, with a bootstrap support of 100%. The three species are all unable to ferment glucose.

Considerations on the clusters and subclusters for taxonomic work

The updates and details of the part of the hominis group studied and discussed in this work will have a profound impact on taxonomic work on mollicutes belonging to the *M. equigenitalium, M. lipophilum* and
Unique and signature nucleotide positions in the 16S rRNA molecules of the different subclusters and lines within the *M. bovis* cluster

Letters a-i correspond to the subclusters and lines of descent indicated in Fig. 1. Unique nucleotide positions in the 16S rRNA genes of members of a particular subcluster are shown in bold. The letter codes R and Y follow the IUPAC code of the International Union of Biochemistry. Abbreviations for single-species lines and subclusters correspond to the line of *M. opalescens* (*Mopa*), the *M. leoflavus* (*Mleoph* subcl.), *M. feliformis* (*Mfel subcl.*), *M. bovis* (*Mbovis subcl.*) and *M. fermentans* (*Mfer subcl.*) subclusters, the line of *M. spermatophilum* (*Mspe*), the *M. iners* subcluster (*Mine* subcl.), the line of *M. lipofaciens* (*Mlipof*), and the *M. bovigenitalium* subcluster (*Mbovig* subcl.), as defined in the text and in Fig. 1. The numbers of particular positions correspond to those in the 16S rRNA molecule of *E. coli* (Brosius et al., 1978).

Table 3

<table>
<thead>
<tr>
<th>Position of base or base pair</th>
<th>(a) Mopa</th>
<th>(b) Mleoph subcl.</th>
<th>(c) Mfel subcl.</th>
<th>(d) Mbovis subcl.</th>
<th>(e) Mfer subcl.</th>
<th>(f) Mspe subcl.</th>
<th>(g) Mine subcl.</th>
<th>(h) Mlipof subcl.</th>
<th>(i) Mbovig subcl.</th>
<th>Comments*</th>
</tr>
</thead>
<tbody>
<tr>
<td>82–87</td>
<td>A·U</td>
<td>A·U</td>
<td>A·U</td>
<td>A·U</td>
<td>A·U</td>
<td>C·G</td>
<td>C·G</td>
<td>A·U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C·G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128–233</td>
<td>U·G</td>
<td>U·G</td>
<td>U·G</td>
<td>U·A</td>
<td>U·G</td>
<td>U·G</td>
<td>U·G</td>
<td>U·G</td>
<td>U·G</td>
<td>U·A: hominis group (few), mollicutes (few)</td>
</tr>
<tr>
<td>148–174</td>
<td>G·A</td>
<td>G·A</td>
<td>G·A</td>
<td>C·U</td>
<td>G·A</td>
<td>G·A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154–167</td>
<td>G·C</td>
<td>U·G</td>
<td>G·C</td>
<td>G·C</td>
<td>G·C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>G</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200–217</td>
<td>A·U</td>
<td>A·U</td>
<td>A·U</td>
<td>R·U</td>
<td>A·U</td>
<td>A·U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
<td>A: bacteria (few)</td>
<td></td>
</tr>
<tr>
<td>407–435</td>
<td>C·G</td>
<td>C·G</td>
<td>C·G</td>
<td>A·U</td>
<td>C·G</td>
<td>C·G</td>
<td>C·G</td>
<td></td>
<td>A·U: hominis group (few)</td>
<td></td>
</tr>
<tr>
<td>443–491</td>
<td>A·U</td>
<td>A·U</td>
<td>U·G</td>
<td>R·U</td>
<td>A·U</td>
<td>A·U</td>
<td>A·U</td>
<td></td>
<td>U·G: hominis group (few)</td>
<td></td>
</tr>
<tr>
<td>450–483</td>
<td>G·C</td>
<td>G·C</td>
<td>G·C</td>
<td>G·C</td>
<td>G·C</td>
<td>G·C</td>
<td>G·C</td>
<td></td>
<td>U·A: mollicutes (few), bacteria (few)</td>
<td></td>
</tr>
<tr>
<td>484</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
<td>U: pneumoniae group, bacteria (few)</td>
<td></td>
</tr>
<tr>
<td>590–649</td>
<td>U·A</td>
<td>U·G</td>
<td>A·U</td>
<td>U·R</td>
<td>U·G</td>
<td>U·G</td>
<td>U·U</td>
<td>U·R</td>
<td>U·U: hominis group (none)</td>
<td></td>
</tr>
<tr>
<td>659–746</td>
<td>A·U</td>
<td>A·U</td>
<td>A·U</td>
<td>G·U</td>
<td>A·U</td>
<td>A·U</td>
<td>A·U</td>
<td>A·U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>722</td>
<td>A</td>
<td>U</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>819</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td>U: hominis group (few)</td>
<td></td>
</tr>
<tr>
<td>830–856</td>
<td>C·G</td>
<td>C·G</td>
<td>C·G</td>
<td>U·A</td>
<td>C·G</td>
<td>C·G</td>
<td>C·G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1163–1173</td>
<td>C·G</td>
<td>C·G</td>
<td>C·G</td>
<td>C·G</td>
<td>C·G</td>
<td>C·G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1243–1294</td>
<td>C·G</td>
<td>A·U</td>
<td>C·G</td>
<td>A·U</td>
<td>C·G</td>
<td>A·U</td>
<td>U·A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1254–1283</td>
<td>A·U</td>
<td>A·U</td>
<td>A·U</td>
<td>A·U</td>
<td>A·U</td>
<td>A·U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1264–1271</td>
<td>U·A</td>
<td>U·A</td>
<td>U·A</td>
<td>U·A</td>
<td>U·A</td>
<td>U·A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1273</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1274</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
<td>A: hominis group (few)</td>
<td></td>
</tr>
<tr>
<td>1310–1327</td>
<td>A·U</td>
<td>A·U</td>
<td>A·U</td>
<td>U·A</td>
<td>U·A</td>
<td>U·A</td>
<td>U·A</td>
<td>G·C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Comments are given as to what extent the actual nucleotide composition can be regarded as discriminatory.
†Taxa listed under comments are exceptions in nucleotide composition found among members of that particular subcluster.
M. bovis clusters. In accordance with previous discussions on facilitating the classification of mycoplasmas (Heldtander et al., 1998; Johansson et al., 1998a; Pettersson et al., 1996, 2000), for a new mycoplasma strain that belongs phylogenetically to any of these clusters or subclusters, it should be sufficient to perform serological tests against the members of that cluster or subcluster. However, if the organism in question shows a 16S rDNA similarity of > 97% to another member(s) of the phylogenetic cluster or subcluster, but is serologically negative with antisera to this member, it is recommended that DNA–DNA hybridization experiments should be performed in order to reveal whether or not the organism should be given novel species status (Stackebrandt & Goebel, 1994).

ACKNOWLEDGEMENTS

We are grateful to Marianne Persson and Ausi Boholm for valuable technical assistance. This work has been supported financially by grants from the Swedish Foundation for Strategic Research to B.P. and from the Research Foundation of SVA (National Veterinary Institute) to K.-E.J. The project forms a part of the EU research collaboration project COST 826 on ‘Ruminants’ Mycoplasmoses’.

REFERENCES

Re-evaluation of the *Mycoplasma lipophilum* cluster

