Lactobacillus frumenti sp. nov., a new lactic acid bacterium isolated from rye-bran fermentations with a long fermentation period

Martin R. A. Müller, Matthias A. Ehrmann and Rudi F. Vogel

Within the framework of the characterization of the microflora of an industrial sourdough fermentation, strains of *Lactobacillus amylovorus*, *Lactobacillus pontis* and two other strains were isolated which could not be associated with a valid species. These latter strains were Gram-positive, catalase-negative, non-sporforming, non-motile rods that could be clearly differentiated from known species by 16S rDNA sequence analysis. For further characterization, the morphological, physiological (sugar fermentation, formation of δ-lactate, hydrolysis of arginine, growth temperature, CO₂ production) and chemotaxonomic (G+C content, cell wall composition, SDS-PAGE of whole-cell proteins) properties were determined. Fitting of the complete 16S rDNA sequence into alignments of such sequences, together with the subsequent phylogenetic calculations, allowed the reconstruction of a phylogenetic tree. These data showed that the two strains were phylogenetically related but formed an independent cluster distinct from their closest neighbours, *L. pontis*, *Lactobacillus panis*, *Lactobacillus oris*, *Lactobacillus vaginalis* and *Lactobacillus reuteri*. The results of DNA–DNA hybridization experiments indicated that the two isolates represent a new *Lactobacillus* species, for which the name *Lactobacillus frumenti* is proposed; the type strain of this species is DSM 13145ᵀ (≡ LMG 19473ᵀ).

Keywords: *Lactobacillus frumenti*, new species, sourdough, type II, fermentation

INTRODUCTION

Lactic acid bacteria (LAB), especially the genera *Lactococcus*, *Leuconostoc*, *Pediococcus* and *Lactobacillus*, play an important role in fermentative food and feed production (Herrero et al., 1996). In nonlactic fermentations, lactobacilli, in particular, contribute to a huge variety of spontaneously fermented indigenous foods and beverages as well as to biotechnological processes carried out under controlled conditions.

The fermentation of starchy substrates can be found in many countries. Numerous reports have elucidated the microbial populations involved in such fermentations, e.g. fermentation of sour cassava (Figueroa et al., 1995; Giraud et al., 1998; Morlon-Guyot et al., 1998), ogi (Johansson et al., 1995), pozol (Ampe et al., 1998) and kishra (Hamad et al., 1997). In Europe, cereal fermentations are mainly applied to the brewing industry, providing sourmashes, and to baking, in which sourdough plays an important role in the preparation of bread dough to improve dough machinability, breadcrumb structure, keeping properties and flavour (Salovaara, 1998). The microbial ecology of such cereal fermentations is determined by several exogenous and endogenous parameters, as reported by Vogel et al. (1996). Whilst a wide variety of LAB, e.g. *Lactobacillus brevis*, *Lactobacillus alimentarius*, *Lactobacillus farcinintis*, Weissella confusa or Enterococcus faecium, can be found in spontaneous homemade sourdough fermentations, *Lactobacillus sanfranciscensis*, *Lactobacillus pontis* and *Lactobacillus panis* are endemic in cereal fermentations, because their competitive metabolism has adapted to this environment. Böcker et al. (1995) introduced a classification of industrial sourdough fermentations which...
takes the kind of propagation and the manner of preparation into consideration, resulting in typical bacterial communities. Whilst L. sanfranciscensis constitutes a stable element (Böcker et al., 1990) in the so-called type I doughs, micro-organisms found in liquid doughs with an extended fermentation period and higher temperatures (type II) belong to the species L. pontis, L. panis, Lactobacillus reuteri, Lactobacillus fermentum and Lactobacillus amylovorus (Vogel et al., 1999).

In this paper we report the description of a new Lactobacillus species from an industrial type II rye-bran fermentation and for which we propose the name Lactobacillus frumenti.

METHODS

Strains, medium and culture conditions. Strains were isolated from an industrial rye-bran sourdough fermentation. For cultivation, the modified MRS medium (mMRS) described by Vogel et al. (1994) was prepared with an additional modification whereby 90% of the water was replaced with a rye-bran extract. For the preparation of 1 l of this extract, 40 g rye bran and 2 g malted wheat meal together with 0.8 g trypsin were incubated for 24 h at 50 °C. The liquid was separated by filtration. Strains of L. frumenti were incubated at 40 °C in line with the fermentation temperature of the sourdough from which they were isolated. The other strains were incubated at the temperature recommended by the respective strain collection. Solid media were incubated under a modified atmosphere (N₂:CO₂ 90%:10%, v/v). Cultures were maintained at –80 °C in glycerol (a pellet of 10 ml overnight culture in 500 µl fresh medium to 500 µl glycerol). The purity of the cultures was checked microscopically and by preparing streak cultures. The two isolates that are described here as the new species L. frumenti sp. nov. bear the numbers of the strain collection of the Technische Mikrobiologie Weihenstephan, i.e. TMW 1.665 and TMW 1.666. Strain TMW 1.666 was deposited as the type strain of the species as LMG 19473^T^ and DSM 13145^T^, and will be referred to as the latter in this paper. The following type strains were used as reference organisms: Lactobacillus vaginalis DSM 5837^T^, L. pontis DSM 8475^T^, L. panis DSM 6035^T^, L. reuteri DSM 20016^T^, Lactobacillus oris DSM 4864^T^, Lactobacillus buchneri DSM 20057^T^.

Physiological characterization. Sugar-fermentation patterns were determined by using a microtitre plate assay. The reproducibility was verified by repeated analysis using cultures grown on mMRS. All sugar solutions (2% w/w) were sterilized by filtration through a 0.2 µm filter. Cells were suspended in a medium containing (per 250 ml) 5 g peptone from casein, 1 g meat extract, 3.5 g yeast extract, 125 mg cysteine, 250 µl Tween 80, 100 mg bromecresol purple, 2.5 g sodium acetate, 250 mg citric acid (ammonium salt), 62.5 mg KH₃PO₄, 125 mg Na₂HPO₄, 100 mg MgSO₄, 5 mg MnSO₄ and 5 mg FeSO₄. The solution was autoclaved for 15 min at 121 °C. A 2 ml aliquot of an overnight culture of each strain was centrifuged and washed three times with 2 ml PBS buffer (8 g NaCl, 0.2 g KCl, 1.44 g Na₂HPO₄, 0.24 g KH₃PO₄ made to 11 with dH₂O pH 7.4). The cell concentration was adjusted with water to an OD₅₆₀ of 1; 45 µl of this cell suspension was added to 1155 µl test medium. From this cell suspension, aliquots of 40 µl were added to each of the wells. In the first well, sugar was replaced with sterile water. To avoid evaporation and to guarantee anaerobic conditions, the wells were covered with parafin. The change of the indicator from purple to yellow was documented after 24, 48 and 168 h. Only definitive changes were rated as positive results. To evaluate the system, additional experiments were carried out using the API 50 CH kit (bioMérieux).

DNA isolation. DNA was isolated according a protocol described by Marmur (1961), with some modifications. One hour before cells were harvested, penicillin G (Sigma) was added to inhibit the synthesis of cross-linkages of the cell wall and therefore to facilitate the lysis. A wet weight of 70 mg cells was used for the DNA isolation. After the protocol, lysis was completed within 45–90 min after the addition of lysozyme and mutanolysine. For some strains, more effective lysis was obtained by using an overnight lysis at 4 °C and a subsequent proteinase K treatment at 60 °C for 1 h, before continuation with the normal protocol. The purified and vacuum-dried DNA was dissolved in 2 x SSC (0.3 M NaCl, 0.03 M Na₂ citrate, 2H₂O, pH 7.0). This DNA preparation served for the DNA–DNA hybridization experiments as well as for 16S rDNA amplification. The purity of the culture subjected to DNA isolation was proved as described above before the addition of penicillin. Furthermore, DNA preparations were checked for their authenticity in a randomly amplified polymorphic DNA (RAPD)-PCR assay (Paramithiotis et al., 2000), comparing the patterns with those of primary preparations.

DNA–DNA hybridization. The determination of DNA homology values was carried out by using chromosomal DNA (chrDNA) from strain DSM 13145^T^ and from L. pontis DSM 8475^T^ as probes. These chrDNA probes were labelled by nick translation using a kit system (Promega) incorporating biotin-21-dUTP (Clontech) for 2 h at 16 °C. The DNA (5 µg) of selected type strains was transferred by using a dot-blot block (Stratagene) on a positively charged nylon membrane (Boehringer Mannheim) and then fixed by incubation at 80 °C for 1 h. The DNA of L. buchneri DSM 2128 | International Journal of Systematic and Evolutionary Microbiology 50:

Downloaded from www.microbiologyresearch.org by.

IP: 54.70.40.11
On: Thu, 01 Aug 2019 15:07:49
Table 1: Physiological and biochemical characteristics of *L. framenti* and selected reference organisms

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>L. framenti DSM 13145<sup>†</sup></th>
<th>L. framenti TMW 1.655</th>
<th>L. panis DSM 6035<sup>‡</sup></th>
<th>L. pontis DSM 8475<sup>†</sup></th>
<th>L. vaginalis DSM 5837<sup>¶</sup></th>
<th>L. oris DSM 4864<sup>§</sup></th>
<th>L. reuteri DSM 20016<sup>‡</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃ from arginine</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>DNA G+C content (mol %)</td>
<td>45.7 ± 0.2<sup>‡</sup></td>
<td>44.4 ± 0.3<sup>‡</sup></td>
<td>48.3 ± 0.3<sup>‡</sup></td>
<td>53 ± 5<sup>¶</sup></td>
<td>38 ± 41<sup>**</sup></td>
<td>49 ± 51<sup>**</sup></td>
<td>40 ± 42<sup>**</sup></td>
</tr>
<tr>
<td>Acid production from:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Arabinose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ribose</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>d-Xylose</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Galactose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fructose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mannose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mannitol</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sorbitol</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>X-Acetylglucosamine</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Arbutin</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ascin</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salicin</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cellobiose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lactose</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Melibiose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Trehalose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Maltose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Raffinose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Glucuronate</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

* Data are from Wiese et al. (1996).
† Data are from Vogel et al. (1994); acid production from sugars was tested in this study.
‡ Data are from Embley et al. (1989).
§ Data are from Farrow & Collins (1988).
¶ Data are from Kandler et al. (1980) and Axelsson & Lindgren (1987).
♦ Determined by the HPLC method.
** Determined by the thermal denaturation method.

20054[†] was included to check the sensitivity of the system for a more distantly related *Lactobacillus* species. The hybridization procedure was carried out as described by Ehrmann et al. (1994), except for the hybridization and washing steps, which were performed with alternative buffers described in the protocol of Engler-Blum et al. (1993). To determine the accessibility of the DNA, a parallel hybridization was carried out with a 5′ biotin-labelled universal probe (612R, 5′-GTAAGGTYTNCGGTG-3′) targeting the 16S rDNA. For the hybridization, 100 ng chrDNA probe and 20 pmol oligo probe (each per ml hybridization solution) were used. Hybridization was performed at 65 °C for the chrDNA probe and at 42 °C for the oligo probe. The detection system consisted of a combination of alkaline phosphatase and the substrate CDP-Star (Boehringer Mannheim). Membranes were exposed to a Kodak X-Omat film (Sigma–Aldrich). The spot intensity was calculated with IMAGE MASTER 2D Elite software (Amersham Pharmacia Biotech). Calculations of homology values were performed in principle as described by Liebl et al. (1991).

Additional DNA–DNA hybridization experiments for *L. framenti* DSM 13145[†], *L. framenti* TMW 1.655 and *L. vaginalis* DSM 5837[¶] were performed by the DSMZ according to the protocol of De Ley et al. (1970), but with the modifications described by Huß et al. (1983) and Escara & Hutton (1980). The renaturation rates were calculated according to Jahnke (1992) with the program TRANSFER: BAS.

16S rDNA amplification and sequencing

PCR-mediated amplification of the complete 16S rDNA was carried out in a Gradient Master thermocycler (Eppendorf). All reagents were from Amersham Pharmacia Biotech, unless otherwise indicated. The amplification conditions were as follows: 1 μl genomic DNA, 10 μl 10× reaction buffer, 200 nM each of the four deoxynucleotides, 1.5 U *Taq* polymerase, 20 pmol each primer (Interactiva) (616V, 5′-AGAGTTTGATYMTGGCTCAG-3′; 630R, 5′-CAKAAAGGGAGGTGATCC-3′) and dH₂O to a final volume of 100 μl. The amplification conditions were as follows: 94 °C for 2 min; 30 cycles of 94 °C for 45 s, 52 °C for 1 min, 72 °C for 30 s; 94 °C for 1 min, 72 °C for 4 min. PCR products were purified by the QIAquick PCR purification kit (Qiagen) and were eluted with 60 μl elution buffer. DNA sequences were determined by the chain-termination method (Sanger et al., 1977) using the Thermo Sequenase fluorescence-labelled primer cycle sequencing kit with 7-deaza-dGTP (Amersham Life Sciences) and separated on an ALF express sequencer (Amersham Pharmacia Biotech) or, alternatively, using the ABI Prism Dye Terminator Cycle Sequencing Kit (Perkin Elmer) on an ABI 373008082745 sequencer. For sequencing, the amplification primer 616V together with the internal amplification primer 609R [5′-ACT AC(T)T (AGC)GG GTA TCT AA(GT) CC-3′], 612R [5′-GTA ACG TT(C)T T(AGC)T CCG T-3′], 607R [5′-ACG TGT GTA GCC C-3′], 606R [5′-
Phylogenetic analysis. The complete 16S rDNA sequences of *L. frumenti* DSM 13145 and TMW 1.655 were fitted into alignments of approximately 16000 homologous full and partial primary structures available in public databases (Ludwig, 1995). Distance-matrix, maximum-parsimony and maximum-likelihood methods were applied for tree reconstructions as implemented in the ARB software package (W. Ludwig & O. Strunk; http://www.mikro.biologie.tumuenchen.de/pub/ARB/documentation/). Different datasets varying with respect to included outgroup reference sequences as well as alignment positions were analysed.

RESULTS

Colony and cell morphology

On mMRS, the colonies of *L. frumenti* DSM 13145 were white with regular sharp edges and, after 3 d growth, they were 1 mm in diameter. The colonies of TMW 1.655 were of a similar shape but were a little smaller and appeared whitish and transparent.

The cells of strains TMW 1.655 and *L. frumenti* DSM 13145 were non-spore-forming, non-motile rods that occurred singly or in pairs (seldom in chains). In liquid cultures of mMRS after 24 h at 40 °C, cells of TMW 1.655 had a tendency to form nest-shaped aggregations. Depending on the period of growth, the ends of the cells were bent like hooks. The cells of *L. frumenti* DSM 13145 were more regular in shape than those of TMW 1.655. The size of a single cell was difficult to determine, because of the heterogeneity. The cell length was between 3 and 5 μm and the diameter was 0.3 μm. The KOH test indicated Gram-positive behaviour.

Physiological and biochemical properties

The sugar patterns and further physiological and biochemical characteristics of *L. frumenti* strains and the reference organisms are listed in Table 1. Melzitose, rhamnose, methyl α-D-mannoside and L-arabinose were fermented only by strain *L. frumenti* DSM 13145. 5-Ketogluconate was fermented only by strain TMW 1.655.

SDS-PAGE pattern

Both strains of *L. frumenti* were included in a comparison of the SDS-PAGE pattern of the whole-cell proteins together with those of the type strains of the closest phylogenetic neighbours (Fig. 1). The protein patterns of *L. frumenti* DSM 13145 and TMW 1.655 were very similar to each other and they could be clearly discriminated from the others.

Phylogenetic position

For both strain TMW 1.655 and *L. frumenti* DSM 13145, 1561 bp of the 16S rDNA were sequenced. Fig. 2 shows a phylogenetic tree based on these sequence data and reflects the phylogenetic position of *L. frumenti*. The percentage similarities between *L. frumenti* and the type strains of the other species were as follows: *L. vaginalis*, 97.7%; *L. panis*, 97.6%; *L. pontis*, 97.3%; *L. oris*, 96.8%; *L. reuteri*, 94.3%. The 16S rRNA sequence of *Lactobacillus sakei* was used as an outgroup rRNA reference.
Because of the high homology values between the
frumenti
50
 kinds, identification purposes, reflecting the natural relation-
at LAB. Within the framework of microbial investi-
gations of long-term rye-bran fermentations, we iso-
lated Lactobacillus strains which were identified by
comparative 16S rDNA sequence analysis. They were
phylogenetically most closely related to L. vaginalis,
but formed an independent cluster.

DNA homology

The DNA–DNA hybridization studies were per-
formed with chrDNA from L. frumenti DSM 13145T against the DNA of the relevant type strains exhibiting
a strong phylogenetic relationship to L. frumenti. To
evaluate the hybridization system for the calculation of
DNA–DNA homology values, DNA from L. pontis
DSM 8475T served as a probe against the same strains.
Because of the high homology values between the L.
frumenti strains and L. vaginalis, both strains were
included in an additional spectrophotometrical
DNA–DNA hybridization experiment against the
latter to verify their independent position as a new
species (Table 2).

DISCUSSION

Reliable identification techniques are fundamental to
the unequivocal description of natural fermentation
communities. Although methods that target the pheno-
types of bacteria lead to an understanding of the
physiological properties, for an increasing number of
species, identification remains ambiguous. The 16S
rDNA molecule emerged as the main target for
species, identification remains ambiguous. The 16S
rDNA molecule emerged as the main target for
identifying species, reflecting the natural relation-
ships of prokaryotes, and has improved our knowledge
of the generic and suprageneric relationships among
LAB. Within the framework of microbial investiga-
tions of long-term rye-bran fermentations, we iso-
lated Lactobacillus strains which were identified by
comparative 16S rDNA sequence analysis. They were
phylogenetically most closely related to L. vaginalis,
but formed an independent cluster.

On the basis of comparative sequence analysis and
phylogenetic calculations, Schleifer & Ludwig (1995)
proposed a species-specific grouping of LAB. Thus, L.
frumenti strains clustered in the L. reuteri subgroup of
the Lactobacillus casei–Pediococcus group, comprising
only obligate heterofermentative lactobacilli, namely
L. oris, L. panis, L. pontis, L. vaginalis, L. reuteri and
L. fermentum. Starting from these 16S rDNA data and
comparative sequence analysis, a determination of
sufficient sequence variation in the V2 region (Neeffs
et al., 1990) of the 16S rDNA was feasible, which offered
the possibility of distinguishing L. frumenti from other
even closely related species (Fig. 3). A PCR-based
system that allows L. frumenti to be differentiated from
these and other sourdough lactobacilli has already
been described by Müller et al. (2000). This supports
the hypothesis that strains DSM 13145T and TMW
1655 should be separated from other members of the
L. reuteri group.

Despite the close phylogenetic relationships of species
within the L. reuteri group, G+C DNA contents
rang from 38 and 54 mol%. The closest phylo-
genetic neighbour of L. frumenti (with a 16S rDNA
similarity of 97.7%) is L. vaginalis. This relationship is
confirmed by their similar G+C content (43:3 versus
41 mol%). The biggest difference in the G+C contents
was shown with L. pontis. In this case, no correlation
with 16S rRNA homology data can be deduced.

The relatedness of L. frumenti and L. vaginalis with
respect to G+C content and 16S rRNA sequence data
contrasts with the chemical composition of the cell
walls of these micro-organisms. L. frumenti has a cell
wall of the peptidoglycan type [A4\textsubscript{L} (L-Lys–D-Asp)],
which constitutes the main feature of species of the Cb
group (Hammes & Vogel, 1995). The cell wall of L.
vaginalis is in the same group but lysine is replaced by
orinine, which can be seen as additional proof of the
status of as L. frumenti as an independent species.

<table>
<thead>
<tr>
<th>Strain</th>
<th>L. frumenti DSM 13145T</th>
<th>L. pontis DSM 8475T</th>
<th>L. vaginalis DSM 5837T</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. pontis DSM 8475T</td>
<td>48</td>
<td>100</td>
<td>ND</td>
</tr>
<tr>
<td>L. panis DSM 6035T</td>
<td>49</td>
<td>43</td>
<td>ND</td>
</tr>
<tr>
<td>L. oris DSM 4864T</td>
<td>66</td>
<td>29</td>
<td>ND</td>
</tr>
<tr>
<td>L. vaginalis DSM 5837T</td>
<td>74</td>
<td>21</td>
<td>ND</td>
</tr>
<tr>
<td>L. reuteri DSM 20016T</td>
<td>49</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>L. buchneri DSM 20057T</td>
<td>27</td>
<td>12</td>
<td>ND</td>
</tr>
<tr>
<td>L. frumenti DSM 13145T</td>
<td>100</td>
<td>46</td>
<td>41*</td>
</tr>
<tr>
<td>L. frumenti TMW 1.655</td>
<td>90</td>
<td>33</td>
<td>45*</td>
</tr>
</tbody>
</table>

* Data were obtained by the spectrophotometric method.

Fig. 3. Diagnostic region 193–208 (Brosius et al., 1981) of the
16S rRNA, which shows sufficient sequence variability to
differentiate L. frumenti from other lactic acid bacteria. Dots
indicate sequence identity to the L. frumenti sequence.

Table 2. Percentage DNA–DNA hybridization results

<table>
<thead>
<tr>
<th>Strain</th>
<th>L. frumenti DSM 13145T</th>
<th>L. pontis DSM 8475T</th>
<th>L. vaginalis DSM 5837T</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. frumenti</td>
<td>193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. vaginalis</td>
<td>208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. oris</td>
<td>193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. panis</td>
<td>208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. pontis</td>
<td>193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. reuteri</td>
<td>208</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SDS-PAGE pattern analysis of whole-cell proteins has proven to be a reliable tool for the discrimination of even closely related species (Pot et al., 1993). SDS-PAGE comparisons (in which the two strains of \textit{L. frumenti} exhibited almost identical patterns) allowed \textit{L. frumenti} DSM 13145$^\text{T}$ and TMW 1.655 to be clearly differentiated from the species \textit{L. pontis}, \textit{L. panis}, \textit{L. oris}, \textit{L. vaginalis} and \textit{L. reuteri}. This, again, can be seen as a further proof of the independent status of \textit{L. frumenti} as a new species.

The determination of DNA reassociation values constitutes a meaningful method for unequivocal species description (Stackebrandt & Goebel, 1994). In particular, when closely related species ($\geq 97\%$ rRNA homology) are inspected, the resolution power of 16S rRNA sequences is limited (Fox et al., 1992), but DNA similarity can range between 10 and 100\% (Stackebrandt & Goebel, 1994). The threshold value for the phylogenetic definition of a species, as proposed by Wayne et al. (1987), should not exceed 70\%. In our case, the DNA–DNA hybridization studies clearly adhered to this principle. For \textit{L. vaginalis} and \textit{L. pontis}, rRNA similarity values with respect to \textit{L. frumenti} were 97.7 and 97.3\%, respectively. However, DNA–DNA homology values between \textit{L. frumenti} and \textit{L. vaginalis} and between \textit{L. frumenti} and \textit{L. pontis} amounted to 74 and 48\%, respectively. The spectrophotometric technique used as a reference method for the determination of homology values for the closest relative, \textit{L. vaginalis}, produced lower values between \textit{L. vaginalis} and TMW 1.655 or DSM 13145$^\text{T}$ (41 and 45\%, respectively). The homology values obtained by dot-blot hybridization of \textit{L. frumenti} against the other species were confirmed by alternative hybridization with the DNA of \textit{L. pontis}. The value for similarity to \textit{L. frumenti} (46\%) was almost identical to that determined by hybridization of \textit{L. frumenti} against \textit{L. pontis} (48\%). Moreover, the similarity calculated between \textit{L. pontis} and \textit{L. panis} was identical (43\%) to the value determined by the spectrophotometric technique (Wiese et al., 1996). Small differences in the homology values (up to 8\%) are possible between the strains of one species and other reference organisms (see Wiese et al., 1996). Summarizing the DNA hybridization results (Table 2), all species could be clearly separated from \textit{L. frumenti}, indicating its independent status as a species.

In view of the phylogenetic evidence (16S rDNA, DNA–DNA homology) presented, the protein-pattern differences measured by SDS-PAGE and the phenotypic distinctiveness of DSM 13145$^\text{T}$ and TMW 1.655, it is proposed that these strains belong to a new species, \textit{L. frumenti} sp. nov.

Description of Lactobacillus frumenti sp. nov. (Müller, Ehrmann and Vogel)

\textit{Lactobacillus frumenti} (fru.men’ti. L. gen. n. frumenti from cereal).

The cells are Gram-positive, non-motile, non-spor-forming rods that occur singly or in pairs (seldom in chains). Growth was observed at temperatures up to 45 $^\circ$C but not at 15 $^\circ$C. They are facultatively anaerobic, catalase-negative and obligately heterofermentative. The l-isomer constitutes more than 85\% of the total lactic acid content. Acid is produced from l-arabinose, ribose, galactose, glucose, fructose, mannose, mannitol, sorbitol, N-acetylglucosamine, amygdalin, arbutin, aesculin (hydrolysed), salicin, cellobiose, maltose, lactose, melibiose, sucrose, trehalose, raffinose and glucanone. Melezitose, rhamnose, methyl 2-d-mannoside and l-arabinose were fermented only by strain DSM 13145$^\text{T}$. 5-Ketogluconate was fermented only by strain TMW 1.655. The type strain is \textit{Lactobacillus frumenti} DSM 13145$^\text{T}$ (= LMG 19473$^\text{T}$).

ACKNOWLEDGEMENTS

This work was supported by a grant from the European Union (FAIR project CT 96 1126) and by Ernst Böcker GmbH & Co. KG (Minden, Germany). We thank Dr Wolfgang Ludwig for the phylogenetic calculations and the reconstruction of the phylogenetic tree. We also wish to thank Jürgen Behr for performing all the physiological experiments.

REFERENCES

