NOTE

Catenibacterium mitsuokai gen. nov., sp. nov., a Gram-positive anaerobic bacterium isolated from human faeces

Akiko Kageyama and Yoshimi Benno

Author for correspondence: Akiko Kageyama. Tel: +81 48 462 1111, ext. 5132. Fax: +81 48 462 4619. e-mail: kageyama@jcm.riken.go.jp

Intestinal microflora in humans and animals consist of a variety of micro-organisms, including anaerobes and aerobes. Species of the genus *Eubacterium*, which are anaerobic, Gram-positive, non-sporing rods, are among the predominant micro-organisms of intestinal microflora.

The definition of the genus *Eubacterium* was unclear and all species that were anaerobic, Gram-positive, non-sporulating, rod-shaped bacteria and which were not members of the genera *Propionibacterium* or *Bifidobacterium* were included in the genus *Eubacterium* (Lewis & Sutter, 1981; Moore & Holdeman-Moore, 1986). The genus is defined by default, so it has, over the years, acted as a repository for a large number of phenotypically diverse species (Andreesen, 1992). Moreover, this genus is probably not phylogenetically homogeneous and contains species from many different phylogenetic groups. In particular, the wide range of genomic DNA base ratios indicates that the genus includes organisms that are phylogenetically unrelated. Recently, some of the species originally assigned to the genus *Eubacterium* have been transferred to other genera or new genera (Kageyama et al., 1999a, b; Wade et al., 1999; Ludwig et al., 1992; Willems & Collins, 1996).

The six strains [RCA14-19 (JCM 10606), RCA14-21 (JCM 10607), RCA14-33 (JCM 10608), RCA14-39T (JCM 10609T), RCA14-45 (JCM 10610) and RCA14-50 (JCM 10611)], used in this study were isolated from Papua New Guinea highlanders’ faeces in 1982. All bacterial strains were cultivated for 2 d at 37°C on EG agar (pre-mixed EG agar, pH 7.7, containing 5% horse blood, 3 g beef extract, 5 g yeast extract, 10 g peptone, 1.5 g glucose, 0.5 g l-cysteine, HCl, 0.2 g l-cystine, 4 g NaHPO₄, 0.5 g soluble starch, 0.5 g Tween 80, 0.5 g silicone and 15 g agar in 1000 ml; Eiken Chemical) in an anaerobic jar with 100% CO₂.

Carbohydrate fermentation, enzymic reactions and analysis of end-products in 1% glucose broth (PYFG broth) were examined (Holdeman et al., 1977; Kaneuchi et al., 1976). PYFG broth contained 10 g Trypticase (BBL), 10 g yeast extract (Difco), 0.5 g l-cystine, HCl (Sigma) and 40 ml salt solution (pH 7.6; containing, per litre, 0.2 g CaCl₂, 0.2 g MgSO₄, 1 g K₂HPO₄, 1 g KH₂PO₄, 10 g NaHCO₃ and 2 g NaCl). The Gram stain followed standard procedures. Motility was tested on PYFG with 0.2% agar slants. After inoculation, cultures were incubated at 37°C for 1 week. Sensitivity to bile was tested in PYFG broth plus 20% bile for 1 week at 37°C. The absence of spores was determined using the alcohol treatment method (Koransky et al., 1978).

Cell wall peptidoglycan was prepared and hydrolysed using the methods of Kawamoto et al. (1981) and the

The GenBank/EMBL/DDBJ accession numbers for the 16S rDNA sequences of *Catenibacterium mitsuokai* JCM 10606–10611 are AB030221–AB030226.
Amino acid composition was analysed with an automatic amino acid analyser (model 835; Hitachi). The neutral amino acid fraction was reacted with a chiral reagent [(+)-1-(9-fluorenyl)ethyl chloroformate] and subjected to HPLC as described by Einarsson & Josefsson (1987).

DNA was isolated as described by Saito & Miura (1963). DNA base composition was estimated using HPLC (Tamaoka & Komagata, 1984). Levels of DNA–DNA relatedness were determined by the method of Ezaki et al. (1989), using photobiotin and microplates.

Almost complete 16S rRNA gene sequences of strains RCA14-19, RCA14-21, RCA14-33, RCA14-39T, RCA14-45 and RCA14-50 were determined. The 16S rRNA gene was amplified using the PCR method and prokaryotic 16S rDNA universal primers 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′-GGTTACCTTGTTACGACTT-3′). The PCR was performed with a DNA thermal cycler (Perkin-Elmer Cetus) using 30 cycles consisting of denaturation at 94 °C for 60 s, primer annealing at 55 °C for 150 s and primer extension at 72 °C for 150 s (with 30 s per cycle added). Sequencing was performed using the ALFred AutoCycle Sequencing Kit (Pharmacia Biotech) with an ALFexpress DNA sequencer (Pharmacia Biotech).

Species closely related to the new isolates were identified by a sequence database search using FASTA. The sequence data of related species were retrieved from GenBank. Nucleotide substitution rates (K_{mu} values) were calculated (Kimura & Ohta, 1972) and phylogenetic trees were constructed by the neighbour-joining method (Saitou & Nei, 1987). The topology of the trees was evaluated by a bootstrap analysis of the sequence data with CLUSTAL W software (Thompson et al., 1994). The sequence determined in this study has been deposited in the DDBJ database.

Strains were Gram-positive, non-spore-forming rods. The cell size was 0.4 µm x 1.2–2.0 µm. They often occurred in long tangled chains (Fig. 1). The isolates were obligate anaerobes. Spores were absent. All strains were non-motile.

All strains produced acid from glucose, mannose, galactose, fructose, sucrose, maltose, cellobiose, lactose and salicin. No strains produced acid from arabinose, xylose, rhamnose, ribose, trehalose, raffinose, melezitose, starch, glycogen, mannitol, sorbitol, inositol, erythritol, aesculin and amygdalin. All strains hydrolysed starch and none of the strains hydrolysed aesculin. Gas formation, indole production, nitrate reduction, gelatin liquefaction and H₂S production were all negative and all strains failed to grow in medium containing 20% bile. The six strains possessed almost the same biochemical and physiological characteristics. On PYFG broth, the isolates produced large amounts of acetic and lactic acids and small amounts of iso-butyric acid. Strains produced either large or small amounts of butyric acid.

The structure of the cell wall peptidoglycan of RCA14-19 and RCA14-39T was determined. Both strains possessed the same peptidoglycan type, which contained, in addition to muramic acid and glucosamine, the amino acids glutamic acid, diaminopimelic acid and alanine at a molar ratio of 1:1:2. Diaminopimelic acid occurred in the meso configuration. Thus, the structural type was A1γ, (L-Ala)-D-Glu-m-Dpm.

The G+C content of the DNA of four strains, RCA14-19, RCA14-21, RCA14-39T and RCA14-45 ranged from 48.4 to 49.8 mol%.
Table 1. DNA base composition and levels of DNA–DNA relatedness among isolated strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>G + C content (mol%)</th>
<th>DNA–DNA reassociation (%) with:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RCA14-19</td>
</tr>
<tr>
<td>RCA14-19</td>
<td>37.2</td>
<td>100</td>
</tr>
<tr>
<td>RCA14-21</td>
<td>38.4</td>
<td>97.8</td>
</tr>
<tr>
<td>RCA14-39²</td>
<td>36.6</td>
<td>96.5</td>
</tr>
<tr>
<td>RCA14-45</td>
<td>36.2</td>
<td>93.2</td>
</tr>
</tbody>
</table>

Fig. 2. Phylogenetic tree derived from 16S rDNA sequences. The tree was created using the neighbour-joining method and K_{nuc} values. Numbers on the tree indicate bootstrap values for the branch points. Only values above 50% are indicated. The sequence data for species other than RCA14-19, RCA14-21, RCA14-33, RCA14-39², RCA14-45 and RCA14-50 were obtained from the GenBank database. The respective numbers of the Clostridium clusters are shown on the right-hand side.

The six strains of Eubacterium-like organisms isolated from the faeces of Papua New Guinea highlanders were characterized. These isolates were Gram-positive, non-spore-forming, rod-shaped organisms. Rods occurring in tangled chains are very unusual. On the basis of the results of phenotypic characterization, sugar fermentation and short fatty acid production from glucose, the strains were consistent with the properties of the genus Eubacterium. The sugar-fermentation patterns were the same as those of Collinsella aerofaciens (I-B; cells produce acid from sucrose, cellobiose and salicin, but not from aesculin or amygdalin) (Kageyama et al., 1999a), but the cell morphology, the DNA G + C content (mol%) and the cell wall murein type were different.

The type species of genus Eubacterium is Eubacterium limosum. It was evident from recent studies that Eubacterium limosum, Eubacterium barkeri and Eubacterium callanderi (Mountfort et al., 1988) can...
form the nucleus of a redefined genus of \textit{Eubacterium}. On the basis of the characteristics of this group, a preliminary working definition of \textit{Eubacterium sensu stricto} was determined (Willems & Collins, 1996). The remaining species currently classified within the genus \textit{Eubacterium} were heterogeneous according to the criteria of a wide range of DNA G + C content and low 16S rDNA sequence similarity (Nakazawa & Hoshino, 1994). Recently, some species belonging to this genus were transferred to new genera. Examples include \textit{Pseudoramibacter alactolyticus} (Willems & Collins, 1996), \textit{Actinomyces suis} (Ludwig et al., 1992), \textit{Eggerthella lenta} (Wade et al., 1999), \textit{C. aerofaciens} (Kageyama et al., 1999a) and \textit{Atopobium fossetor} (Kageyama et al., 1999b). A new genus, \textit{Holdemania}, which resembles the genus \textit{Eubacterium} in terms of phenotypic characteristics but differs with respect to 16S rDNA and chemotaxonomic characters, was also established (Willems et al., 1997).

In this study, the six isolated strains could be assigned to the genus \textit{Eubacterium} on the basis of many of their phenotypic characteristics. On the basis of 16S rDNA sequence analysis and chemotaxonomic characteristics, the six strains belonged to \textit{Clostridium} cluster XVII. However, the 16S rDNA sequence similarity of the isolates to the closest previously described species, \textit{L. catenaformis} and \textit{L. vitulinus}, was < 92.0%, suggesting that the new strains should be classified in a novel genus. This conclusion was supported by phenotypic differences. While the structure of the cell wall murein of \textit{L. catenaformis} was L-Lys-L-Ala, the structure of the cell wall murein of \textit{L. vitulinus} was the same as that of the isolates (Sharpe et al., 1973). However, these isolates and \textit{L. vitulinus} had different fermentation products; \textit{L. vitulinus} produced only D(-)-lactic acid (Sharpe et al., 1973).

The unknown isolates from human faeces clearly belonged to a hitherto unrecognized, Gram-positive species within the \textit{Clostridium} subphylum. From 16S rDNA gene sequence comparisons, it was evident that the bacterium has a close phylogenetic relationship with \textit{L. catenaformis} and \textit{L. vitulinus}. Although the association between these taxa was significant, a sequence divergence of > 8% suggested that this relationship is one of phylogenetically closely related, but different, genera. On the basis of 16S rDNA sequence considerations and other phenotypic characteristics, we believe that this bacterium merits classification as a new genus, for which the name \textit{Catenibacterium mitsuokai} gen. nov., sp. nov. is proposed.

Description of \textit{Catenibacterium mitsuokai} gen. nov.

\textit{Catenibacterium} (Ca.te.ni.bac.te.ri.um. L. fem. n. ca-tena chain; Gr. dim. n. bakterion a small rod; M.L. neut. n. Catenibacterium chain rodlet).

Cells occur in tangled chains. Gram-positive and obligatory anaerobic. Spores are absent. Fermentation products of glucose are acetic, lactic, butyric and iso-butyric acids. Cell wall contains an A1γ-type peptidoglycan with an (L-Ala)-d-Glu-m-Dpm peptide subunit. The G + C content of the DNA is 36–39 mol%. The type species is \textit{Catenibacterium mitsuokai}. The genus \textit{Catenibacterium} is a member of the \textit{Clostridium} subphylum of Gram-positive bacteria and exhibits a close phylogenetic association with \textit{Lactobacillus catenaformis} and \textit{Lactobacillus vitulinus}.

Acknowledgements

We thank M. Chijimatsu for analysis of the cell wall.

References

