Methanobacterium oryzae sp. nov., a novel methanogenic rod isolated from a Philippines ricefield

Catherine Joulian,¹ Bharat K. C. Patel,² Bernard Ollivier,¹ Jean-Louis Garcia¹ and Pierre A. Roger¹

Author for correspondence: Pierre A. Roger. Tel: +33 4 9182 8571. Fax: +33 4 9182 8570. e-mail: rogerpa@esil.univ-mrs.fr

A rod (0.3–0.4 μm × 3–10 μm) to filamentous (up to 40 μm) non-motile methanogenic bacterium, designated strain FPiT (T = type strain), was isolated from ricefield soil in the Philippines. The strain uses H₂+CO₂ or formate for growth and produces CH₄. Optimum growth temperature is 40 °C; no growth is observed at 15 °C or 45 °C. Optimum pH for growth is 7; no growth is observed at pH 5.5 or 9.0. Strain FPiT is halotolerant and grows at NaCl concentrations of 0–25 g l⁻¹. The G+C content of its DNA is 31 mol%. Based on 16S rRNA gene sequence analysis, the isolate was identified as a new species of the genus *Methanobacterium: Methanobacterium oryzae* sp. nov. The type strain is FPiT (= DSM 11106ᵀ).

Keywords: Archaea, methanogens, Methanobacterium oryzae, phylogeny, ricefield soil

Methane-producing bacteria are strict anaerobes belonging to the domain Archaea. They are commonly isolated from natural anoxic environments, including freshwater and marine sediments, wet and waterlogged soils, the rumen and the gut of insects (Boone et al., 1993; García, 1990; Mah & Smith, 1981). They play an important role in these environments by performing the last step of anaerobic decomposition of organic matter, which is mineralized to CH₄ and CO₂.

Waterlogged ricefields, because of anoxic conditions developing after flooding, are major anthropogenic sources of CH₄ (Minami et al., 1994), one of the major greenhouse gases (Lelieveld et al., 1993). In ricefields, H₂ and acetate are the main energy sources used by methanogens (Conrad et al., 1989; Schütz et al., 1989; Takai, 1970). These substrates are produced as a result of fermentative metabolism or the activity of syntrophic associations degrading reduced compounds such as butyrate and propionate (Dong & Stams, 1995; Schink, 1992; Stams, 1994).

Twenty-six genera of methane-producing bacteria have currently been described (Boone et al., 1993), but only strains of *Methanobacterium, Methanobrevibacter, Methanoculleus, Methanoseta* and *Methanosaeta* have so far been isolated and cultivated from ricefield soils (Asakawa et al., 1993, 1995; Fetzer et al., 1993; Grosskopf et al., 1998; Joulian et al., 1998; Raimbault, 1981; Rajagopal et al., 1988). Joulian et al. (1996) reported on the presence of *Methanospirillum* in a French ricefield. By using a phylogenetic approach based on DNA extracted from soil, Kudo et al. (1997) provided evidence for the presence of *Methanosaeta, Methanogenium, Methanoseta* and *Methanobacterium* in Japanese ricefields. More recently, Grosskopf et al. (1998) provided evidence for the presence of *Methanosaeta, Methanosaeta* and *Methanobacterium* in Italian rice soils on the basis of both molecular and cultivation studies. Currently, only a limited number of strains isolated from ricefields have been identified at the species level. They include *Methanobrevibacter arboriphilicus* (Asakawa et al., 1993) and *Methanosarcina maezii* (Asakawa et al., 1995) isolated from Japanese ricefields. Based on phylogenetic and phenotypic characteristics, the isolation of five species of methanogens, *Methanobacterium bryantii, Methanobacterium formicicum, Methanosarcina Barkeri, Methanosarcina maezii* and *Methano-culleus marisnigri* from 13 ricefield soils has been reported (Joulian et al., 1998). Characterization of a new species of a rod-shaped methanogen, designated strain FPiT (T =

The GenBank accession numbers for the 16S rDNA sequences of strain FPiT and *Methanobacterium palustre* are AF028690 and AF093061, respectively.

¹ Laboratoire de Microbiologie IRD, Université de Provence – ESIL, Case 925, 163 Avenue de Luminy, 13288 Marseille cedex 9, France
² School of Biomolecular and Biomedical Sciences, Faculty of Science and Technology, Griffith University, Brisbane, Queensland 4111, Australia

NOTE
Strain FPIT was isolated from a ricefield soil in the Philippines (Pila area, Luzon Province). Enrichments were performed in a medium containing formate as carbon and energy source (Joulian et al., 1998). Pure cultures were obtained by using Hungate anaerobic techniques and repeated application of the agar shake dilution method (Hungate, 1969; Macy et al., 1972). Methods for growing strains and determining temperature, pH and salinity ranges for growth, and substrate utilization by strain FPIT were described by Joulian et al. (1998). *Methanobacterium bryantii* DSM 863T was grown on H\textsubscript{2} + CO\textsubscript{2}. *Methanobacterium palustre* DSM 3108T, *Methanobacterium formicicum* DSM 1535T and strain FPIT were grown on formate. The procedures used for DNA extraction, purification, 16S rRNA gene amplification, RFLP analysis and sequencing were also described by Joulian et al. (1998).

The 16S rRNA gene sequences obtained for strain FPIT and *Methanobacterium palustre* (1445 and 1400 nt, respectively) were manually aligned by using the sequence editor ae2 (Maidak et al., 1996) with the sequences of representative methanogens extracted from the GenBank and RDP databases (version 6.0). Positions of sequences and/or alignment ambiguity were omitted from the analysis, and pairwise evolutionary distances of 1335 nt were computed by the method of Jukes & Cantor (1969). A dendrogram was obtained from the distance matrix by the neighbour-joining method (Felsenstein, 1993). All programs used form part of the PHYLIP package (Felsenstein, 1993). The DNA G + C content was determined by the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ, Braunschweig, Germany) by using HPLC as described by Mesbah et al. (1989).

Several circular colonies 1–2 mm in diameter developed in solid media after 2–3 weeks incubation at 37 °C. Microscopic examination revealed the presence of non-motile rods (0.3–0.4 µm × 3–10 µm) occurring singly, in chains, and as aggregates in old cultures. Filamentous cells (up to 40 µm) were also frequently observed (Fig. 1). Strain FPIT showed the typical fluorescence of methanogens under UV light (420 nm) and phenotypic characteristics similar to that of the genus *Methanobacterium*. Strain FPIT grew at temperatures of 20–42 °C (but not at 15 °C or 45 °C), with an optimum around 40 °C. Growth occurred at pH 6–8.5 (but not at pH 5.5 or 9.0), with an optimum around 7.0. The isolate was halotolerant and grew at NaCl concentrations of 0–25 g l-1 with an optimum between 0 and 5 g l-1. Strain FPIT grew only on H\textsubscript{2} + CO\textsubscript{2} or formate as the sole carbon and energy source. It grew on both substrates in the absence of yeast extract, but growth was faster when 1 g l-1 yeast extract was added to the medium. Growth and methane production on secondary alcohols isobutanol and 2-propanol were negative. The mean DNA G + C composition of strain FPIT was 31 mol %.

The genus *Methanobacterium* currently comprises physiologically diverse species of which four are validated mesophilic and neutrophilic species, namely *Methanobacterium bryantii*, *Methanobacterium uliginosum*, *Methanobacterium formicicum* and *Methanobacterium palustre*. The most closely phenotypic relatives of strain FPIT are *Methanobacterium palustre* and *Methanobacterium formicicum* since both form filaments and use H\textsubscript{2} + CO\textsubscript{2} and formate as carbon and energy sources (Table 1). However, phylogenetic analysis indicated that strain FPIT was more related to *Methanobacterium bryantii* (similarity of 96.5%) than to *Methanobacterium formicicum* (similarity of 95.0%) or *Methanobacterium palustre* (similarity of 95.1%) (Fig. 2). It has been proposed that members of the same genus whose 16S rRNA sequence similarity is less than 97% should be regarded as separate species (Stackebrandt & Goebel, 1994). Based on this criterion alone, strain FPIT should be given species status. Interestingly, a recent study on the phylogenetic diversity of methanogens in ricefield soils (Grosskopf et al., 1998) reported the presence of a *Methanobacterium* species closely related to strain FPIT, indicating that this organism may be common in ricefields.

The 16S rRNA sequence of *Methanobacterium uliginosum* is not available for analysis. However, restriction endonuclease digestion (using four restriction enzymes, BamHI, CfoI, Sau3A and TaqI) of the partially amplified 16S rRNA revealed a matching RFLP profile for *Methanobacterium uliginosum* and *Methanobacterium bryantii* that substantially differed from that of strain FPIT (data not shown). From this,
Table 1. Major characteristics of strain FPiT and mesophilic and neutrophilic species of the genus Methanobacterium

<table>
<thead>
<tr>
<th>Species</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture collection number</td>
<td>DSM 11106<sup>T</sup></td>
<td>DSM 1535<sup>T</sup> (= OCM 55<sup>T</sup>)</td>
<td>DSM 3108<sup>T</sup> (= OCM 238<sup>T</sup>)</td>
<td>DSM 863<sup>T</sup> (= OCM 110<sup>T</sup>)</td>
<td>DSM 2956<sup>T</sup> (= OCM 176<sup>T</sup>)</td>
</tr>
<tr>
<td>Source</td>
<td>Ricefield</td>
<td>Domestic sludge</td>
<td>Peat bog</td>
<td>Sewage sludge</td>
<td>Marshy soil</td>
</tr>
<tr>
<td>Temperature range (°C)</td>
<td>20–42</td>
<td>20–45</td>
<td>33–37</td>
<td>37–39</td>
<td>15–45</td>
</tr>
<tr>
<td>Optimum temperature (°C)</td>
<td>40</td>
<td>37–45</td>
<td>ND</td>
<td>ND</td>
<td>40</td>
</tr>
<tr>
<td>pH range</td>
<td>6–0–8.5</td>
<td>6–0–8.5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Optimum pH</td>
<td>7.0</td>
<td>7.0</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>NaCl concn range (g l<sup>–1</sup>)</td>
<td>0–25</td>
<td><30</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Optimum NaCl concn (g l<sup>–1</sup>)</td>
<td>5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>G+C content (mol%)<sup>+</sup></td>
<td>31 (Lc)</td>
<td>41–42 (Bd)</td>
<td>34 (T<sub>m</sub>)</td>
<td>33–38 (Bd)</td>
<td>29 (T<sub>m</sub>)</td>
</tr>
<tr>
<td>Substrates used†</td>
<td>H₂ + CO₂, formate</td>
<td>H₂ + CO₂, formate, iP, iB</td>
<td>H₂ + CO₂, formate, iP, iB</td>
<td>H₂ + CO₂, iP, iB</td>
<td>H₂ + CO₂, iP, iB</td>
</tr>
</tbody>
</table>

⁺ Determined by: Lc, HPLC analysis; Bd, buoyant density method; or T_m, melting point analysis.

† iP, 2-propanol; iB, isobutanol.

It can be inferred that strain FPiT^T is distinct from *Methanobacterium uliginosum*, especially since strain FPiT^T and *Methanobacterium bryantii* are phylogenetically distinct, as reported above. This inference is also supported by the phenotypic differences observed between strain FPiT^T (grows on formate) and *Methanobacterium uliginosum* (does not grow on formate) (Table 1).

Our results are in agreement with previous phenotypic and DNA reassociation studies showing that *Methanobacterium palustre* is a new species of the genus *Methanobacterium* (Zellner et al., 1989). Our studies clearly establish that strain FPiT^T should be regarded as a new species of the genus *Methanobacterium, Methanobacterium oryzae* sp. nov.

Description of Methanobacterium oryzae sp. nov.

Methanobacterium oryzae (o.ry’zae. M.L. fem. n. oryza generic name of rice; M.L. gen. n. oryzae of rice).

Round colonies, 1–2 mm in diameter develop after 2–3 weeks of incubation. Cells are 0.3–0.4 µm in width and 3–10 µm in length, non-motile and rod-shaped, occurring singly or in chains (up to 40 µm in length), depending on their growth phase. Methanogen (domain *Archaea*). Optimum temperature for growth is 40 °C with no growth occurring at 15 °C and 45 °C. Optimum pH for growth is 7.0 with no growth occurring at pH 5.5 and 9.0. Cells are halotolerant and growth occurs in medium containing 0–25 g l^{–1} NaCl. Growth substrates include H₂ + CO₂ and formate. No growth on 2-propanol or isobutanol. Yeast extract is not required for growth but its presence stimulates growth. The mean DNA G+C content is 31 mol % (as determined by HPLC). Isolated from a ricefield soil. The type strain is FPiT^T (= DSM 11106^T).

Acknowledgements

The authors acknowledge the kind contribution of the International Rice Research Institute, Los Baños, Philippines, in providing the soil sample from which the...
strain was isolated. Funding from the Australian Research Council to B.K.C.P. is gratefully acknowledged.

References

