Aminobacterium mobile sp. nov., a new anaerobic amino-acid-degrading bacterium

S. Baena,1,2 M.-L. Fardeau,1 M. Labat,1 B. Ollivier,1 J.-L. Garcia1 and B. K. C. Patel3

Author for correspondence: B. K. C. Patel. Tel: +61 417 726671. Fax: +61 7 38757656. e-mail: bharat@genomes.sci.gu.edu.au

A novel, curved (0.3 x 4.0–5.0 μm), Gram-negative, non-sporulating, mesophilic bacterium, designated strain ILE-3T (T = type strain), was isolated from an anaerobic lagoon in a dairy wastewater treatment plant. Optimal growth occurred at 37 °C and pH 7.4 on a medium containing serine as an energy source and yeast extract. The strain was motile by means of one or two lateral flagella. It required yeast extract for growth on serine, glycine, threonine and pyruvate. Poor growth was obtained on cysteine, Casamino acids, biotrypcase, peptone and 2-oxoglutarate. In the presence of Methanobacterium formicicum, strain ILE-3T oxidized alanine, glutamate, leucine, isoleucine, valine and aspartate to a minor extent. The G+C content of the DNA was 44 mol%. Phylogenetic analysis of the 16S rRNA gene of strain ILE-3T indicated that it was related to Aminobacterium colombiense (95% similarity value). On the basis of the phenotypic and phylogenetic characteristics, strain ILE-3T is designated as a new species of the genus Aminobacterium, namely Aminobacterium mobile sp. nov. (≡ DSM 12262T).

Keywords: amino acid utilization, interspecies hydrogen transfer, Methanobacterium formicicum, Aminobacterium mobile

Saccharolytic amino-acid-degrading bacteria and the non-saccharolytic amino-acid-degrading bacteria play a significant role in protein turnover in the rumen (Smith & MacFarlane, 1997). The saccharolytic amino acid degraders have been rigorously studied in this ecosystem (Hobson & Wallace, 1982; Wallace, 1986). With the isolation of non-saccharolytic amino acid degraders (Chen & Russell, 1988, 1989; Paster et al., 1993; Attwood et al., 1998), much greater attention has now been paid to this bacterial community in terms of their diversity and their role in the rumen. In contrast, reports on the extent of microbial diversity of such microbes in other environments is scant (Stams & Hansen, 1984; Zindel et al., 1988; Baena et al., 1998a, 1999). As part of our investigations, we chose a protein-rich, anaerobic dairy wastewater lagoon to study diversity of non-saccharolytic amino-acid-degrading microbes and the role they play in protein turnover. We had previously reported the isolation and characterization of various obligate amino acid degraders from this environment, including a new species of sulfate-reducing bacteria (Baena et al., 1998b) and two new genera, Aminobacterium and Aminomonas (Baena et al., 1998a, 1999). In this report, we describe the isolation and characterization of a new member (strain ILE-3T) of the genus Aminobacterium, which we have designated Aminobacterium mobile sp. nov.

The methods used for the preparation of media have been described previously (Baena et al., 1998a). For initiating enrichments, a sludge sample collected from an anaerobic dairy wastewater treatment lagoon (Santa Fe de Bogota, Colombia) was serially diluted 10-fold, inoculated into a basal medium containing isoleucine (10 mM) and yeast extract (0.2%) and then incubated at 37 °C for up to 4 weeks. The same medium, fortified with agar (2%), was used to prepare roll tubes for the isolation of pure cultures. The methods used for bacterial characterization and co-culture studies with Methanobacterium formicicum (DSM 1535) have been described previously (Baena et al., 1998a). Growth and product formation were analysed after 2 to 3 weeks of incubation at 37 °C. Light- and electron-microscopy methods were used as described by Fardeau et al. (1997a). Growth was measured by inserting growth tubes directly into a model UV-160A spectrophotometer (Shimadzu) and

The GenBank/EMBL/DDBJ accession number for the 16S rRNA sequence of strain ILE-3T is AF073521.
measuring the optical density at 580 nm. The fermentation end products were determined as described by Fardeau et al. (1993). Amino acid concentrations were measured using HPLC (Moore et al., 1958). The G + C content was determined by the DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany) using the method of Mesbah et al. (1989). For substrate-utilization studies, 0.2% yeast extract was added to the basal medium. l-Amino acids (serine, threonine, glycine, cysteine, alanine, glutamate, valine, isoleucine, proline, methionine, aspartate, leucine, phenylalanine, histidine, asparagine, glutamine, arginine, lysine), organic acids (pyruvate, succinate, malate, fumarate, citrate, 2-oxoglutarate, lactate, acetate, propionate, butyrate) and sugars (glucose, sucrose, ribose, xylose, cellobiose, melibiose, maltose, galactose, mannose, arabinose, rhamnose, lactose, sorbose, mannitol) were each tested at a final concentration of 10 mM. Glycerol and ethanol were added to a final concentration of 5 mM, whereas biotrypcase, peptone, Casamino acids, gelatin and casein were each tested at a final concentration of 0.5%. The electron acceptors tested were thiosul fate (10 mM), sulfate (10 mM), elemental sulfur (2%), sulfite (2 mM), sodium fumarate (20 mM) and nitrate (10 mM). Amino acid degradation via the Stickland reaction was tested in a basal medium containing 10 mM alanine as electron donor and 20 mM glycine, 20 mM serine, 20 mM proline or 20 mM arginine as electron acceptor. DNA extraction and amplification of the 16S rRNA gene have been described previously (Andrews & Patel, 1996; Baena et al., 1998a). The new sequence data generated were aligned, checked for accuracy manually using the alignment editor, ae2 (Maidak et al., 1996), and deposited in GenBank. The BLAST program (Altschul et al., 1997) was used against the GenBank database to determine homology with recently released closely related sequences. For analysis, the sequences of Anaerobaculum thermoterrenum, Dethiosulfovibrio peptidovorans and Aminobacterium colombiense were extracted from GenBank (accession nos U50711, U52817 and AF069287, respectively) and manually aligned with the prealigned sequences obtained from the Ribosomal Database Project (Maidak et al., 1996). Pairwise evolutionary distances based on 1151 unambiguous nucleotides were computed using the PHYLIP package (Felsenstein, 1993) and TREECON (Van de Peer & De Wachter, 1993).

Positive growth was observed in the 10⁻⁶ dilution tube after 4 weeks incubation at 37 °C in the basal medium containing isoleucine and yeast extract. 2-Methylbutyrate and acetate were detected as the major end products. Microscopic examination revealed the presence of two morphotypes, i.e. curved and straight rods. Subsequently, two distinct types of colonies developed in the highest serially diluted roll tube after 2 weeks incubation at 37 °C. One type of colony was rhizoid and the cells were spore-forming rods that grew on H₂ + CO₂, producing acetate; they were tentatively identified as members of the genus Clostridium but were not studied further. The second type of colony was round, whitish and possessed smooth edges. Microscopic examination revealed the presence of curved cells in the latter colony; this culture was designated ILE-3T and was characterized further.

Although strain ILE-3T was initially enriched on isoleucine and yeast extract, it grew poorly in this medium as a pure culture, suggesting that the hydrogenotrophic microbial partner (Clostridium sp.) in the initial enrichments was important for isoleucine degradation. Accordingly, co-culture experiments revealed that strain ILE-3T grew on isoleucine only in the presence of a hydrogen scavenger, i.e. M. formicicum (see below). Therefore, we assume that the strain’s ability to grow in initial enrichment cultures was due to the hydrogenotrophic, acetogenic Clostridium strain. Further studies revealed that strain ILE-3T fermented serine (10 mM) in the presence of yeast extract (0.2%). These new culture conditions were used for growth-characterization studies.

Strain ILE-3T cells were Gram-negative, non-sporulating, curved rods (Fig. 1) measuring 4–0.5 × 0.3 µm. Cells were motile by means of one or two lateral flagella. Ultra-thin sections of strain ILE-3T revealed a multilayered, complex, Gram-negative cell wall. Strain ILE-3T did not require NaCl for growth, grew optimally at a temperature of 37 °C (the temperature range for growth was 35–42 °C) and a pH 7–4 (the pH range for growth was 6.7–8.3).

Table I shows the substrates used by strain ILE-3T and the end products. Strain ILE-3T required yeast extract for growth. It fermented serine, glycine, threonine and pyruvate but growth was poor on Casamino acids, peptone, biotrypcase, cysteine and 2-oxoglutarate. The fermentation end products from these substrates included acetate and H₂. Propionate and acetate were the end products of 2-oxoglutarate fermentation. Acetate and alanine were produced from serine fermentation.

Fig. 1. Phase-contrast photomicrograph of cells, from exponential growth-phase culture of strain ILE-3T, depicting their curved shape. Bar, 10 µm.
Table 1. Substrates used by strain ILE-3T

Cysteine, Casamino acids, peptone and biotryptase were poorly used. Arginine, proline, methionine, phenylalanine, histidine, aspartagine, glutamine, lysine, tryptophan, gelatin, casein, succinate, malate, fumarate, citrate, lactate, sucrose, glucose, fructose, ribose, cellobose, xylose, mannose, melibiose, maltose, galactose, lactose, arabinose, rhamnose, sorbose, mannitol, glycerol, ethanol, acetate, propionate and butyrate were not used. ND, Not determined.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Products formed (mM):</th>
<th>ΔOD580</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acetate</td>
<td>Propionate</td>
</tr>
<tr>
<td>Fermented:*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serine</td>
<td>5.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Glycine</td>
<td>6.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Threonine</td>
<td>7.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pyruvate</td>
<td>5.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2-Oxoglutarate</td>
<td>1.2</td>
<td>1.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oxidized in co-culture:†</th>
<th>Products formed (mM):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acetate</td>
<td>Propionate</td>
</tr>
<tr>
<td>Alanine</td>
<td>8.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Glutamate</td>
<td>2.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Valine</td>
<td>0.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Leucine</td>
<td>0.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Aspartate</td>
<td>5.5</td>
<td>0.0</td>
</tr>
<tr>
<td>2-Oxoglutarate</td>
<td>0.5</td>
<td>3.0</td>
</tr>
</tbody>
</table>

* Basal medium containing 0.2% yeast extract was used. Results were obtained after 21 d incubation at 37°C.
† Strain ILE-3T was co-cultured with Methanobacterium formicicum in basal medium containing 0.2% yeast extract. Results were obtained after 21 d incubation at 37°C. Succinate, malate, fumarate and citrate were not used in co-culture.

Alanine, glutamate, valine, isoleucine, leucine and aspartate were oxidized only in the presence of the hydrogenotroph M. formicicum. The utilization of 2-oxoglutarate was also enhanced in the presence of M. formicicum. The end products resulting from the oxidation of alanine, leucine, isoleucine and valine were acetate, isobutyrate, 2-methyl-butyrate and isovalerate, respectively.

In co-culture, propionate was also produced from glutamate oxidation. In addition, the amounts of propionate produced from 2-oxoglutarate degradation were enhanced in the presence of a hydrogenotrophic partner.

Sulfate, thiosulfate, elemental sulfur, sulfite, nitrate and fumarate were not utilized as electron acceptors. Strain ILE-3T did not perform the Stickland reaction when alanine was provided as an electron donor and glycine, serine, arginine or proline was provided as electron acceptor.

The G + C content of the DNA of strain ILE-3T was determined as 44 mol%. Phylogenetic analysis of the nearly complete 16S rRNA gene sequence (1539 nucleotides) corresponding to positions 18–1539 (Escherichia coli numbering according to Winker & Woese, 1991) indicated that it was a member of the low G + C, Gram-positive branch, with Aminobacterium colombiense its closest relative (95% similarity value). This relationship was confidently predicted (100%) by bootstrap analysis of 100 datasets (Fig. 2).

Asaccharolytic amino acid degraders have been isolated from different environments, such as estuary mud (Acidaminobacter hydrogenoformans; Stams & Hansen, 1984), black anaerobic mud (Eubacterium acidaminophilum; Zindel et al., 1988), an anaerobic digester (Selenomonas acidaminiphila; Nanninga et al., 1987), the rumen (Clostridium aminoform; Paster et al., 1993), an oilfield (Dethiosulfovibrio peptidovorans; Magot et al., 1997) and an anaerobic lagoon of dairy wastewater (A. colombiense and Aminomonas paucivorans; Baena et al., 1998a, 1999). Phylogenetically, A. colombiense is the closest relative of strain ILE-3T (similarities of 95%). Similarities were observed since both species are Gram-negative, non-
Fig. 2. Phylogenetic dendrogram, based on 16S rRNA sequence data, indicating the position of *Aminobacterium mobile* strain ILE-3T within the radiation of representatives of the low G+C Gram-positive bacteria. All of the sequences used in the analysis, with the exception of *Anaerobaculum thermoterrrenum*, *Dethiosulfovibrio peptidovorans* and *Aminobacterium colombiense* (GenBank accession nos U50711, U52817 and AF069287, respectively), were obtained from the Ribosomal Database Project, version 5.0 (Maidak et al., 1996). Bootstrap values, expressed as a percentage of 100 replications, are shown at the branching points. Only values above 90% were considered significant and therefore reported. Bar, 10 nucleotide substitutions per 100 nucleotides.

Table 2. Utilization of serine by strain ILE-3T in the presence and absence of *M. formicicum*

Results were recorded after 3 weeks incubation at 37 °C. The basal medium contained yeast extract (0 ± 2%). Tubes containing basal medium with yeast extract (0 ± 2%) and lacking substrates were used as controls. The final concentrations were determined by subtracting values obtained from the control tubes (1 ± 7 mM acetate) from those of utilized substrates. ND, Not determined.

<table>
<thead>
<tr>
<th>Growth conditions</th>
<th>Serine used (mM)</th>
<th>Acetate</th>
<th>Propionate</th>
<th>Alanine</th>
<th>H₂</th>
<th>CO₂</th>
<th>CH₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure culture</td>
<td>10.0</td>
<td>5.3</td>
<td>0.0</td>
<td>4.7</td>
<td>0.4</td>
<td>5.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Co-culture</td>
<td>7.4</td>
<td>8.3</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>ND</td>
<td>2.4</td>
</tr>
</tbody>
</table>

sporulating curved rods that use a limited number of amino acids (serine, glycine and threonine). In addition, their metabolic potential is similarly enhanced in co-culture with *M. formicicum* in comparison with pure cultures. Alanine, valine, leucine, isoleucine and aspartate are oxidized only in co-culture in both strains (Baena et al., 1998a). However, strain ILE-3T, unlike *A. colombiense*, has a slightly lower G+C DNA content (44% versus 46%), is motile and ferments serine to acetate and alanine (Table 2). To our knowledge, this constitutes the first report on such metabolism during serine fermentation. In the case of *A. colombiense* and other aminolytic species, which include *Thermoanaerobacter brockii* (Fardeau et al., 1997b), *Peptococcus prevotii* (reclassified as *Peptostreptococcus prevotii*) (Bentley & Dawes, 1974) and *Eubacterium acidaminophilum* (Zindel et al., 1988), acetate and/or ethanol were the typical end products of serine fermentation.

L-Alanine production from amino acid fermentation has been rarely reported. *Caloramator proteoclasticus* (Tarlera et al., 1997) was shown to produce this amino acid.
acid during glutamate fermentation, whereas *Clostridium ultunense* (Schnurer et al., 1996) produced it during cysteine degradation. L-Alanine production during saccharide fermentation has been studied in some members of the domains *Archaea* and *Bacteria* (Ravot et al., 1996; Ørlygsson et al., 1995). In the case of *Pyrococcus furiosus* (Kengen & Stams, 1994), the electrons released from the oxidative decarboxylation of pyruvate are utilized to produce alanine and the involvement of an alanine amino-transferase has been demonstrated during this process. Because this archaeon is highly sensitive to pH, alanine production results in adjustment of its redox potential (Kengen & Stams, 1994). This metabolism is different from that observed in *Clostridium* strain P2 (Ørlygsson et al., 1995), as pyruvate utilization and alanine production are dependent upon the ammonium concentration in the growth medium. Strain ILE-3\(^{T}\) used pyruvate as an energy source and produced alanine and acetate, suggesting that this compound is an intermediate product of serine metabolism. Since co-culture of strain ILE-3\(^{T}\) with a hydrogenotrophic methanogen led only to the production of acetate and methane, we can conclude that L-alanine production from serine degradation is also sensitive to pH, as in *P. furiosus*. In this respect, the involvement of an alanine aminotransferase activity during serine fermentation can be now hypothesized for strain ILE-3\(^{T}\).

We had previously reported the isolation and characterization of the non-saccharolytic amino acid degraders, *A. colombiense* and *A. paucivorans* from a dairy wastewater effluent sample (Baena et al., 1998a, 1999). Strain ILE-3\(^{T}\) is the second isolate from this ecosystem to belong to the genus *Aminobacter* and is phylogenetically different from *A. colombiense*, the only species described within this genus. We are currently unsure if these bacteria dominate this ecosystem but our data clearly show that such microbes may play an important role in amino acid turnover in protein-rich dairy waste ecosystems, particularly in the presence of hydrogenotrophic partners. Further research on the degradation of amino acids and peptides should therefore take this into account.

On the basis of the phylogenetic and phenotypic traits, we propose to designate strain ILE-3\(^{T}\) as a new species of the genus *Aminobacterium*, namely *Aminobacterium mobile* sp. nov.

Description of Aminobacterium mobile sp. nov.

Aminobacterium mobile (mo’bi lle. L. masc. adj. mobile motile).

Slightly curved to rod-shaped bacterium 0.2–0.3 \(\times\) 4.0–5.0 \(\mu\)m in size, occurring singly or (rarely) in chains. Gram-negative, non-spore-forming. Strictly anaerobic. Colonies (up to 1.0 mm) are round, smooth, lens-shaped and white. Mesophilic. The optimal growth temperature is 37 °C and growth occurs in the temperature range 20–42 °C. The pH range for growth is 6.6–8.5, with an optimum at pH 7.3. Strain ILE-3\(^{T}\) does not require NaCl for growth but tolerates up to 1.5% NaCl, with optimum growth occurring at 0.05–0.5% NaCl. Yeast extract required for growth. Ferments serine, threonine, glycine and pyruvate and uses alanine, glutamate, valine, leucine, isoleucine and aspartate only in co-culture with *Methanobacterium formicicum*. No growth observed on succinate, malate, fumarate, citrate, lactate, glucose, sucrose, ribose, xylose, cellobiose, melibiose, maltose, galactose, mannose, arabinose, rhamnose, lactose, sorbose, mannitol, acetate, propionate, butyrate, glycerol, ethanol, gelatin or casein. The G+C content of the DNA is 44 mol%. The type strain is ILE-3\(^{T}\) (= DSM 12262). Isolated from anaerobic sludge of a dairy wastewater treatment plant in Santa Fe de Bogota, Colombia.

Acknowledgements

We thank N. Zyliber (BIP-CNRS) for amino acid analysis, and P. Thomas for electron microscopy. This work was supported by grants from the French Foreign Office (P. C. P.), the Instituto Colombiano para el desarrollo de la Ciencia y la Tecnologia (COLCIENCIAS) (to S. B.) and, in part, the Australian Research Council (to B. K. C. P.)

References

Int J Syst Bacteriol

high-performance liquid chromatography.

39 measurement of the G

improved system.

graphy of amino acids on sulfonated polystyrene resins: an

from corroding offshore oil wells.

264

International Journal of Systematic and Evolutionary Microbiology

