Luteococcus peritonei sp. nov., isolated from the human peritonem

Matthew D. Collins,1 Paul A. Lawson,1 Natalia Nikolaitchouk2,3 and Enevold Falsen2

Author for correspondence: Matthew D. Collins. Tel: +44 118 935 7226. Fax: +44 118 926 7917. e-mail: m.d.collins@reading.ac.uk

An unusual catalase-positive pleomorphic Gram-positive rod isolated from a human clinical specimen was subjected to a polyphasic taxonomic analysis. Comparative 16S rRNA gene sequence analysis revealed the unknown bacterium was a member of the high G+C branch of the Gram-positive bacteria (Actinobacteria), and was phylogenetically a member of the family Propionibacteriaceae, with Luteococcus japonicus as its nearest relative. Based on both phenotypic and phylogenetic evidence, it is proposed that the unknown bacterium be classified in the genus Luteococcus, as Luteococcus peritonei sp. nov. The type strain of Luteococcus peritonei is CCUG 38120T.

Keywords: Luteococcus peritonei, taxonomy, phylogeny, 16S rRNA

The genus Luteococcus was proposed by Tamura et al. (1994) to accommodate two strains of a Gram-positive cocccus-shaped bacterium which were originally isolated in Japan from soil and from water used for brewing ‘miyamizu’ (Oda, 1935). Currently only a single species, Luteococcus japonicus, is recognized. Phylogenetically Luteococcus japonicus is a member of the family Propionibacteriaceae (Stackebrandt et al., 1997) which includes Propionibacterium, Propioniferax and Microlunatus. Luteococcus japonicus resembles most other species of this family in possessing a cell wall murein based on LL-diaminopimelic acid (LL-Dpm) but differs significantly in synthesizing predominantly (approx. 90% of total acids) mono-unsaturated long-chain cellular fatty acids (Tamura et al., 1994). In contrast other members of the Propionibacteriaceae produce major amounts of iso- and anteiso- methyl-branched cellular fatty acids. During the course of a study of unusual Actinobacteria that cause or are associated with human disease, we have characterized a LL-Dpm-containing rod-shaped bacterium which resembles Luteococcus japonicus in possessing very high levels of monounsaturated cellular fatty acids. Based on the results of a polyphasic taxonomic study, we propose the unknown rod-shaped bacterium be classified in the genus Luteococcus as Luteococcus peritonei sp. nov.

Abbreviation: LL-Dpm, LL-diaminopimelic acid.

The GenBank accession number for the 16S rRNA gene sequence of strain CCUG 38120T was AJ132334.
manually and approximately 100 bases at the 5’ end of the rRNA were omitted from further analyses because of alignment ambiguities. A continuous stretch of 1320 bases was used for distance matrix analysis. A distance matrix was calculated using the programs PRETTY and DNADIST (using the Kimura 2-correction parameter) of the PHYLIP package (Felsenstein, 1989), and a tree was constructed by the neighbour-joining method with the program NEIGHBOR of the same package. The stability of the groupings was estimated by bootstrap analysis (500 replications) using the programs DNABOOT, DNADIST, NEIGHBOR and CONSENSE (Felsenstein, 1989).

The unknown isolate consisted of Gram-positive pleomorphic rod-shaped cells which were non-motile. The strain was facultatively anaerobic and catalase-positive. Using commercially available API kits the organism produced acid from glucose, lactose, mannitol, methyl β-D-glucopyranoside and sucrose, but not from L-arabinose, D-arabitol, cyclohextrin, glycollate, melibiose, melezitose, pullulan, ribose, raffinose, sorbitol, trehalose, tagatose or D-xylose. The organism hydrolysed aesculin but not gelatin or casein. β-Galactosidase, β-glucosidase, β-galacturonidase, α-mannosidase, α-L-fucosidase, glycyl-tryptophan arylamidase, β-D-glucuronidase, leucine arylamidase and pyrazinamidase were detected but not for arginine dihydrolase, β-D-galactosidase, β-D-glucuronidase, leucine arylamidase and pyrazinamidase were detected but not for arginine dihydrolase, α-glucosidase, mannobiose and glycyl-tryptophan arylamidase. N-acetylgalcosamidase, lipase C14, β-D-mannosidase, β-D-glucosidase, β-D-galactosidase, β-galacturonidase, α-L-fucosidase, glycyl-tryptophan arylamidase, N-acetylglucosaminidase, lipase C14, α-D-mannosidase, β-D-mannosidase, pyroglutamic acid arylamidase, trypsin, valine arylamidase or urease. The organism reduced nitrate to nitrite and was Voges–Proskauer-negative. Analysis of the cell wall hydrolysate of the unknown isolate revealed 1,1-Dpm as the dibasic amino acid, whilst MK-9(II, II, III, H4) was found to constitute the major respiratory menaquinone. This latter combination of chemical features is found in a number of Actinobacteria including members of the family Propionibacteriaceae. An examination of the long-chain cellular fatty acids of the unknown bacterium was, therefore, performed and revealed predominantly acids of the monounsaturated types (composition: C15:0 8%; C16:0 5%; C17:0 4.2%; C19:1ω7c 21.4%; C16:1ω7c 17.5%; C17:1ω9c 37.5%; C18:1ω7c 6.4%). The presence of such high levels (>80%) of monounsaturated fatty acids is very unusual but has been previously reported in Luteococcus japonicus (Tamura et al., 1994). Determination of the fatty acid composition of Luteococcus japonicus CCUG 38731T, grown under similar conditions as the unknown organism, revealed a remarkably similar profile (composition: C14:0 0.8%; C15:0 8.6%; C16:0 5.4%; C17:0 3.9%; C18:0 0.9%; C15:1ω7c 20.2%; C16:1ω7c 14.2%; C17:1ω7c 44%; C18:1ω9c 2%). To investigate the phylogenetic position of the unknown isolate its almost complete 16S rRNA gene sequence was determined and subjected to a comparative analysis. Sequence database searches revealed the unknown bacterium was phylogenetically a member of the Actinobacteria and displayed a specific association with members of the Propionibacteriaceae. Highest sequence similarity was shown with Luteococcus japonicus (94%; 82 mismatches, two unmatched; 1395 bp), with Propioniferax innocua (91.5%; 114 mismatches, five unmatched; 1380 bp), Microlunatus phosphovorus (91.2%; 123 mismatches, four unmatched; 1397 bp), Friedmanniella antarctica (93.4%; 91 mismatches, two unmatched; 1395 bp) and Propionibacterium spp. (90–91.5%) also displaying high levels of relatedness.

A tree constructed by the neighbour-joining method depicting the phylogenetic relationships of the unknown isolate is shown in Fig. 1 and demonstrates that it represents a new subsline, adjacent to Luteococcus japonicus, within the Propionibacteriaceae. The branching point of the unknown strain CCUG 38120T and Luteococcus japonicus was supported by 93% recovery in the bootstrap analysis.

The polyphasic taxonomic analysis has shown the unknown clinical isolate CCUG 38120T originating from a foetal autopsy represents a hitherto unrecognized species within the Propionibacteriaceae. Phylogenetically the organism forms a distinct subsline and has a statistically significant affinity with Luteococcus japonicus. This association between the unidentified rod and Luteococcus japonicus is strongly
supported by cellular fatty acid data. Both taxa are highly unusual in synthesizing predominantly mono-unsaturated long-chain fatty acids. All other recognized members of the Propionibacteriaceae (viz.: Friedmanniella, Microlunatus, Propioniferax and Propionibacterium) synthesize major amounts of methyl-branched-chain fatty acids (e.g. Pitcher & Collins, 1991; Yokata et al., 1994; Nakamura et al., 1995; Schumann et al., 1997). Under other circumstances we would consider differences in cellular morphology combined with a 16S rRNA gene sequence divergence of 6% between the unknown rod and Luteococcus japonicus to possibly be indicative of different genera. However, the cellular fatty acid composition of Luteococcus japonicus is so unusual, that the occurrence of a virtually identical profile within the unknown rod, is in our opinion, sufficiently compelling to outweigh the aforementioned considerations. Therefore, based on molecular genetic and molecular evidence, we propose the unknown isolate CCUG 38120T to be classified in the genus Luteococcus, as Luteococcus peritonei sp. nov.

Emended description of the genus Luteococcus

Tamura, Takeuchi and Yokota

The description of the genus Luteococcus (Tamura et al., 1994) should be emended to include the following: some cells consist of Gram-positive pleomorphic rods. Nitrate may or may not be reduced to nitrite.

Description of Luteococcus peritonei sp. nov.

Luteococcus peritonei (pe.ri.to.ne’i. L. n. peritoneum peritoneum; L. gen. neut. n. peritonei of the peritoneum). Cells consist of pleomorphic Gram-positive rods. Cells are non-pigmented. Facultatively anaerobic and catalase-positive. Acid is produced from glucose, lactose, sucrose, mannitol and methyl β-D-glucopyranoside. Acid may or may not be produced from maltose. Acid is not produced from L-arabinose, D-arabitol, cyclo-dextrin, glycogen, melibiose, melezitose, pullulan, ribose, raffinose, sorbitol, trehalose, tagatose or D-xylose. Aesculin is hydrolysed but not gelatin or hippurate. α-Galactosidase, β-galactosidase, β-galacturonidase, α-glucosidase, β-glucosidase, β-glucuronidase, leucine arylamidase and pyrazinamidase are produced. Arginine dihydrolase, lipase C14, chymotrypsin, α-fucosidase, glycol-tryptophan arylamidase, N-acetylglucosaminidase, α-mannosidase, β-mannosidase, pyroglutamic acid arylamidase, trypsin, valine arylamidase and urease are not produced. Activity for alkaline phosphatase and acid phosphatase may or may not be detected. Voges–Proskauer-negative. Nitrate is reduced to nitrite. Cell wall contains L1-Dpm. MK-9(H2) is the predominant menaquinone. Synthesizes predominantly monounsaturated cellular fatty acids. Habitat is not known. Isolated from human peritoneum. Pathogenic potential is not known. The G+C content of DNA is 65 mol%. The type strain is CCUG 38120T.

Luteococcus peritonei can be distinguished from Luteococcus japonicus by its pleomorphic rod-shaped morphology. Additionally, using API systems and identical test conditions, Luteococcus peritonei differs from Luteococcus japonicus in producing acid from lactose and methyl β-D-glucopyranoside, producing β-glucuronidase, failing to produce pyrrolidonyl arylamidase, and by reducing nitrate.

Acknowledgements

We are grateful to Professor Hans Trüper (Bonn, Germany) for coining the species name.

References


