Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium

A. I. Slobodkin, T. P. Tourova, B. B. Kuznetsov, N. A. Kostrikina, N. A. Chernyh and E. A. Bonch-Osmolovskaya

A thermophilic, anaerobic, spore-forming, dissimilatory Fe(III)-reducing bacterium, designated strain SR4T, was isolated from sediment of newly formed hydrothermal vents in the area of the eruption of Karymsky volcano on the Kamchatka peninsula. Cells of strain SR4T were straight-to-curved, peritrichous rods, 0.4-0.6 μm in diameter and 3.5-9.0 μm in length, and exhibited a slight tumbling motility. Strain SR4T formed round, refractile, heat-resistant endospores in terminally swollen sporangia. The temperature range for growth was 39-78 °C, with an optimum at 69-71 °C. The pH range for growth was 4.8-8.2, with an optimum at 6.3-6.5. Strain SR4T grew anaerobically with peptone as carbon source. Amorphous iron(III) oxide present in the medium stimulated the growth of strain SR4T; cell numbers increased with the concomitant accumulation of Fe(II). In the presence of Fe(III), strain SR4T grew on H2/CO2 and utilized molecular hydrogen. Strain SR4T reduced 9,10-anthraquinone-2,6-disulfonic acid, sulfite, thiosulfate, elemental sulfur and MnO2. Strain SR4T did not reduce nitrate or sulfate and was not capable of growth with O2. The fermentation products from glucose were ethanol, lactate, H2 and CO2. The G+C content of DNA was 32 mol%. 16S rDNA sequence analysis placed the organism in the genus Thermoanaerobacter. On the basis of physiological properties and phylogenetic analysis, it is proposed that strain SR4T (= DSM 12299T) should be assigned to a new species, Thermoanaerobacter siderophilus sp. nov.

Keywords: Thermoanaerobacter, Fe(III) reduction, Mn(IV) reduction, thermophiles, magnetite

INTRODUCTION

Reduction of Fe(III) by micro-organisms has important implications in the cycling of iron and organic matter and has been intensively studied in marine and freshwater anoxic sediments and submerged soils (Lovley, 1991, 1995; Nealon & Saffarini, 1994). Dissimilatory Fe(III)-reducing micro-organisms have also been found in a variety of thermobiotic environments, including sediments of hydrothermal vents and hot springs (Slobodkin et al., 1995; Slobodkin & Wiegel, 1997), sedimentary basins in the deep terrestrialsubsurface (Boone et al., 1995; Liu et al., 1997) and submarine petroleum reservoirs (Greene et al., 1997).

Dissimilatory Fe(III)-reducing micro-organisms can be subdivided into several physiological groups according to the electron donor used for Fe(III) reduction: (i) fermentative, which use Fe(III) reduction as a minor pathway for electron flow while fermenting sugars or amino acids; (ii) hydrogen-oxidizing; (iii) sulfur-oxidizing; and (iv) organisms that oxidize poorly fermentable substrates, such as organic acids, alcohols and aromatic compounds.

Iron-reducing thermophiles available in pure culture are represented by several phylogenetically diverse micro-organisms. The aerobic archaeon Sulfolobus...
Acidocaldarius reduces Fe(III) with elemental sulfur (Brock & Gustafson, 1976). The anaerobic Bacillus infernus reduces Fe(III) with formate or lactate as the electron donor (Boone et al., 1995). The anaerobic (eu)bacteria Deferribacter thermophilus (Greene et al., 1997) and Thermoterrabacterium ferrireducens (Slobodkin et al., 1997) couple Fe(III) reduction with the oxidation of complex organic substrates, organic acids, alcohols and molecular hydrogen. Recently, the ability to reduce Fe(III) with glycerol under oxygen limitation was shown for the moderately thermophilic acidophiles Sulfolobus thermosulfidooxidans, Sulfo-bacillus acidophilus and Acidimicrobium ferrooxidans (Bridge & Johnson, 1998).

In this paper, we describe an anaerobic, dissimilatory Fe(III)-reducing, thermophilic bacterium, Thermoanaerobacter siderophilus sp. nov., isolated from hydrothermal vents on the Kamchatka peninsula.

METHODS

Environmental samples. Samples of sediments and water were collected in March 1997 from newly formed hydrothermal vents in the area of the eruption of Karymsky volcano on the Kamchatka peninsula. The temperatures at the sampling sites ranged from 70 to 94 °C, pH from 6.1 to 7.1 and E, from -215 to -305 mV.

Media and cultivation. A basal medium used for enrichment, isolation and cultivation of Fe(III)-reducing bacteria was prepared anaerobically by boiling and cooling it under CO, atmosphere of CO, (100%). All transfers and sampling of media were performed anaerobically by boiling and cooling it under CO, (100%). All transfers and sampling of media were performed in CO,-free media were used in nitrate-amended experiments. Cultures grown in pre-reduced basal medium without any electron acceptor were used as inocula (5% v/v). The use of the electron acceptors was judged from culture growth (for all acceptors), sulfide production (for sulfate, sulfite, thiosulfate and elemental sulfur), change of visible colour of the medium or precipitate (for MnO, and AQDS) and from the accumulation of Mn(II) (for MnO,).

Temperature, pH and NaCl concentration ranges for growth and susceptibility to antibiotics were determined in basal medium in which amorphous iron(III) oxide was omitted and peptone was replaced by glucose (5 g l⁻¹). The medium was pre-reduced with Na₂S.9H₂O (0.5 g 1⁻¹) in the experiments with sulfate, sulfite, thiosulfate and elemental sulfur, no reducing agent was present in media containing O₂, MnO, or 9,10-anthaquinone-2,6-disulfonic acid (AQDS). Both reduced and reducing-agent-free media were used in nitrate-amended experiments. Cultures grown in pre-reduced basal medium without any electron acceptor were used as inocula (5% v/v). The use of the electron acceptors was judged from culture growth (for all acceptors), sulfide production (for sulfate, sulfite, thiosulfate and elemental sulfur), change of visible colour of the medium or precipitate (for MnO, and AQDS) and from the accumulation of Mn(II) (for MnO,).

Microscopy. Routine examinations and cell counting were performed under a phase-contrast Amplival microscope (Carl Zeiss Jena). Transmission electron microscopy was performed with a model JEM-100 electron microscope (JEOL) as described previously (Bonch-Osmolovskaya et al., 1990). Gram staining was performed according to Norris & Swain (1971).

Analytical techniques. Fe(III) reduction was monitored by measuring the accumulation of Fe(II) over time. Fe(II) was measured by adding a 0.5 ml sample from the culture to 5 ml 0.6 M HCl. After 24 h extraction, HCl-soluble Fe(II) was determined with 2,2'-dipyridyl (Balashova & Zavarzin, 1980). Iron-containing precipitate was analysed by X-ray diffraction analysis (Slobodkin et al., 1995). Mn(II) was analysed by atomic absorption spectrophotometry after HCl extraction (Lovley & Phillips, 1988). Determination of short-chain organic acids, alcohols and gaseous products of metabolism was performed by GC; sulfide was determined by a colorimetric method as described previously (Slobodkin & Bonch-Osmolovskaya, 1994).

Cultivation of reference strains. Thermoanaerobacter sulfurophilus strain L-64T (= DSM 11584T) was from the culture collection of the Laboratory of Hyperthermophilic Microbial Communities, Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia. Thermoanaerobacter wiegelii strain Rt8.B1T (= DSM 10319T) was obtained from the Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany. The strains were routinely cultured in the mineral medium described above with glucose (5 g l⁻¹) as the main energy source. Tests for
Fe(III) reduction were performed in the basal medium with amorphous iron(III) oxide as an electron acceptor; the electron donors were 20 mM lactate (for *Thermoanaerobacter sulfuriphilus*), 20 mM glycerol (for *Thermoanaerobacter wiegelli*) or 1% w/v peptone (for both strains). The cultivation temperature was 60 °C for *Thermoanaerobacter sulfuriphilus* and 65 °C for *Thermoanaerobacter wiegelli*.

DNA characteristics. The DNA was extracted and purified by the method of Marmur (1961). Its base composition was determined based on optical renaturation-rate measurements (Gillis et al., 1970). DNA–DNA hybridization studies were performed by the optical reassociation method as described previously (Krivenko et al., 1990).

16S rRNA sequence studies. The 16S rRNA gene was selectively amplified from genomic DNA by PCR using 5'-AGAGTTTTGATCCTGGCTCAG-3' as the forward primer and 5'-TAGCGGTACCCTTGATACGACCTT-3' as the reverse primer (Lane, 1991).

The PCR was carried out in 100 μl reaction mixture containing 1 μg DNA template, 200 μM (each) primers, 200 μM (each) dNTPs and 3 U Tet-z polymerase (Bio-Master) in reaction buffer (100 mM Tris/HC1 pH 8.3, 500 mM KCl, 20 mM MgCl2). The temperature cycling was done by using 30 amplification cycles of 1 min at 94 °C, 1 min at 42 °C and 1 min at 72 °C. The final extension was carried out at 72 °C for 6 min. The PCR products were purified using the PCR-prep kit (Promega) as recommended by the manufacturer. The 16S rRNA gene was sequenced in both directions with the use of forward and reverse primers. DNA sequencing was performed by using Sequenase version 2.0 (USB).

The 16S rDNA sequence was aligned with a representative set of 16S rDNA sequences obtained from the Ribosomal Database Project or from recent GenBank releases by using MULTALIN software (Corpet, 1988). Positions that had not been sequenced in one or more reference organisms were omitted and a total of 1593 nucleotides were used in the analysis. Pairwise evolutionary distances were computed by the correction of Jukes and Cantor (1969). The rooted phylogenetic tree was constructed by the neighbour-joining method (Saitou & Nei, 1987) with bootstrap analysis of 100 trees using the programs of the TREECON package (Van de Peer & De Wachter, 1994).

RESULTS

Enrichment and isolation

Four sediment/water samples obtained from newly formed hydrothermal vents in the area of the eruption of Karymsky volcano on the Kamchatka peninsula were used for enrichment of thermophilic, dissimilatory Fe(III)-reducing micro-organisms. Basal anaerobic medium, in which peptone was an electron donor and amorphous iron(III) oxide was provided as an electron acceptor, was inoculated with 10% (w/v) of the sample and incubated at 85 °C in the dark. After 2 weeks incubation, no accumulation of Fe(II) was observed. After that, the same flasks were incubated at 70 °C. After 72–96 h cultivation, in two enrichments, non-magnetic, brown amorphous iron(III) oxide was converted to a black, solid material of less volume, which was strongly attracted to a magnet and contained a significant amount of Fe(II). For the isolation of a pure culture, the enrichment with the fastest rate of Fe(III) reduction (sampling point: T = 94 °C, pH = 6.1, E0 = −215 mV) was chosen. After three successive 5% (w/v) transfers, the enrichment was repeatedly serially diluted to extinction in the basal medium in which iron(III) oxide was replaced by AQDS (20 mM). The highest dilution that was positive for AQDS reduction (10−6) was serially diluted to extinction in agar shake tubes (1.5% Bacto Agar) in the basal medium with AQDS. Single colonies were removed and subcultured in liquid basal medium with amorphous iron(III) oxide. Light microscopic observation revealed that the organism in these cultures was a spore-forming rod. The culture was then transferred (5% v/v) to fresh basal medium with AQDS, autoclaved at 121 °C for 90 min to kill vegetative cells and incubated at 70 °C. After 48 h incubation, this culture was serially diluted to extinction in agar shake tubes (1.5% Bacto Agar) in basal medium with AQDS and the procedure of isolation and subculturing of single colonies was repeated. After that, the culture was considered to be pure and was designated as strain SR4T.

Colonize and cell morphology

In agar-shake cultures, the colonies appeared after 18–24 h. The colonies were uniformly round, 0.5–1.0 mm in diameter and white. When grown in the basal medium with peptone and external electron acceptor [amorphous iron(III) oxide, AQDS, sulfite or thiosulfate], the vegetative cells of strain SR4T were straight-to-curved rods, 0.4–0.6 μm in diameter and 3.5–9.0 μm in length (Fig. 1a, b). The cells occurred singly or in short chains, were peritrichous and exhibited a slight tumbling motility. The cells stained Gram-positive in both the exponential and stationary growth phases. Strain SR4T formed round, refractile endospores in terminally swollen sporangia. Maximal sporulation was observed in liquid medium with AQDS: up to 10% of the cells sporulated during the late exponential phase. The cultures survived 90 min
Fig. 1. Electron micrographs of strain SR4T cells grown in basal medium with peptone as an electron donor and sulfate as an electron acceptor. (a) Negatively stained whole-cell specimen. (b) Cell with peritrichous flagella (negative staining). (c) Ultrathin section showing cell-wall layers. (d) Ultrathin section showing cell division. Bars, 1 μm.

exposure to 121 °C, thus confirming that the spores were heat resistant.

Ultrathin sectioning of strain SR4T revealed a distinct peptidoglycan layer in the cell wall (Fig. 1c). The cells appeared to divide via a septation mechanism, with the formation of V-shaped membrane invaginations (Fig. 1d).

Growth and Fe(III) reduction

Strain SR4T grew anaerobically with peptone as the main organic carbon source (Fig. 2). Amorphous iron(III) oxide present in the medium stimulated the growth of strain SR4T. The number of cells increased with the concomitant accumulation of Fe(II). Without an external electron acceptor, the growth yield of SR4T on peptone was reduced; addition of Na2S.9H2O (0.5 g l⁻¹) to decrease the redox potential of the medium did not stimulate growth significantly. During the growth of strain SR4T in medium with Fe(III), the production of molecular hydrogen was lower than during growth without Fe(III). Reduction of Fe(III) was not observed in non-inoculated medium with peptone (1% w/v), incubated at 70 °C.

In the presence of amorphous iron(III) oxide, strain SR4T grew on H2/CO2 (80:20 or 5:95 v/v) and utilized molecular hydrogen. The consumption of hydrogen did not exceed 5 mmol H2 l⁻¹ culture. For each mole of H2 consumed, 2.15 ± 0.32 mol (mean ± SD for five cultures) Fe(II) was produced. Cell number increased...
Thermoanaerobacter siderophilus sp. nov.

One hundred per cent was equivalent to a specific growth rate of 0.24 h⁻¹.

The products of amorphous iron(III) oxide reduction with peptone and molecular hydrogen as electron donors were magnetite and siderite.

Physiological characteristics

The temperature range for growth of strain SR4ᵀ was 39–78 °C, with an optimum at 69–71 °C (Fig. 3). No growth was detected at 79 °C or at temperatures of 36 °C or lower after 3 weeks incubation. The strain grew in a pH range from 4.8 to 8.2, with an optimum at 6.3–6.5 (Fig. 4). No growth was detected at pH 4.6 or 8.4. Growth of SR4ᵀ was observed at NaCl concentrations ranging from 0 to 3.5% (w/v), with no growth evident at 4.0% (w/v).

The substrates utilized by strain SR4ᵀ in the presence, as well as in the absence, of Fe(II) as an electron acceptor included peptone (10 g l⁻¹), yeast extract (10 g l⁻¹), casein (10 g l⁻¹), starch (10 g l⁻¹), glycerol (20 mM), pyruvate (20 mM), glucose (25 mM), sucrose (25 mM), fructose (25 mM), maltose (25 mM), xylose (25 mM), cellobiose (25 mM) and sorbitol (25 mM). Strain SR4ᵀ used H₂/CO₂ (80:20 v/v) in the presence of Fe(II). Fe(II) was stimulatory for growth of strain SR4ᵀ with all substrates utilized; however, Fe(II) was chemically reduced in sterile controls in the experiments with carbohydrates. Thus, the results of the test on stimulation of growth by Fe(II) on carbohydrates should be considered equivocal. Strain SR4ᵀ did not use formate (20 mM), acetate (20 mM), lactate (20 mM), methanol (20 mM), ethanol (20 mM), propan-1-ol (20 mM), propan-2-ol (20 mM), butan-1-ol (20 mM), propionate (20 mM), n-butylate (20 mM), succinate (20 mM), malate (20 mM), maleate (20 mM), glycine (20 mM), alanine (20 mM), arginine (20 mM), L-arabinose (25 mM), olive oil (10 ml⁻¹), xylan (10 g l⁻¹), carboxymethylcellulose (10 g l⁻¹) or filter paper (10 g l⁻¹), with or without Fe(II) as an electron acceptor. The fermentation products from glucose were ethanol, lactate, H₂ and CO₂.

Strain SR4ᵀ reduced amorphous iron(III) oxide (90 mM), AQDS (20 mM), sulfite (5 mM), thiosulfate (20 mM), elemental sulfur (150 mM) and MnO₂ (20 mM). Sulfite, thiosulfate and elemental sulfur were reduced to hydrogen sulfide. Reduction of MnO₂ resulted in the formation of a whitish precipitate composed of the Mn(II) state. Strain SR4ᵀ did not reduce nitrate (20 mM) or sulfate (20 mM) and was not capable of growth with O₂ (20% v/v in the gas phase).

Chloramphenicol, neomycin, polymyxin B and kanamycin completely inhibited growth at concentrations of 100 µg ml⁻¹ medium. Penicillin, ampicillin, streptomycin and novobiocin at 100 µg ml⁻¹ did not inhibit growth.

DNA characteristics and phylogenetic analysis

The G + C content of the genomic DNA of strain SR4ᵀ was 32 mol% (Tm). The molecular mass of genomic DNA of strain SR4ᵀ was 3·14 x 10⁹ Da.

We determined an almost complete 16S rDNA sequence for strain SR4ᵀ, corresponding to positions 11–1506 of *Escherichia coli* numbering. Phylogenetic analysis of 16S rDNA sequences placed strain SR4ᵀ in the cluster comprising members of the genus *Thermoanaerobacter*, with a mean sequence identity of 95.9% (Fig. 5). The closest relatives of strain SR4ᵀ were...
Table 1. Specific elements of the secondary structure of 16S rRNA in different Thermoanaerobacter species

<table>
<thead>
<tr>
<th>Species</th>
<th>Region of 16S rRNA sequence (E. coli numbering)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. siderophilus strain SR4T</td>
<td>80 1040 1140 1440</td>
</tr>
<tr>
<td>T. wiegelii</td>
<td>80 1040 1140 1440</td>
</tr>
<tr>
<td>T. sulfurophilus</td>
<td>80 1040 1140 1440</td>
</tr>
<tr>
<td>T. acetethiicus</td>
<td>80 1040 1140 1440</td>
</tr>
<tr>
<td>T. ethamolicus</td>
<td>80 1040 1140 1440</td>
</tr>
<tr>
<td>T. kivui</td>
<td>80 1040 1140 1440</td>
</tr>
<tr>
<td>T. thermohydrolysulfuricus</td>
<td>80 1040 1140 1440</td>
</tr>
<tr>
<td>T. mathranii</td>
<td>80 1040 1140 1440</td>
</tr>
<tr>
<td>T. brockii</td>
<td>80 1040 1140 1440</td>
</tr>
<tr>
<td>T. thermocoriae</td>
<td>80 1040 1140 1440</td>
</tr>
</tbody>
</table>

Thermoanaerobacter wiegelii and Thermoanaerobacter sulfurophilus (levels of identity 98.1 and 97.9%, respectively). However, bootstrap values for the branching point of strain SR4T (less than 50%) indicate that its position is not yet conclusively resolved.

The affiliation of strain SR4T to the genus Thermoanaerobacter is also supported by additional secondary structure analysis. Comparison of the 16S rDNA sequences of Thermoanaerobacter species with small-subunit rRNA of prokaryotes revealed the presence of unique long versions of certain helices around positions 80, 1040, 1140 and 1440 (E. coli numbering) (Rainey et al., 1993). The number and type of long versions of these helices vary in different Thermoanaerobacter species (Table 1). Strain SR4T differed from all validly described Thermoanaerobacter species by the combination of specific versions of these helices.

Considering the high levels of identity (more than 97%) between the 16S rDNA sequences of strain SR4T and Thermoanaerobacter wiegelii and Thermoanaerobacter sulfurophilus, quantitative DNA–DNA hybridization experiments were performed. The levels of DNA reassocitation were: between strain SR4T and Thermoanaerobacter wiegelii, 50%, and between strain SR4T and Thermoanaerobacter sulfurophilus, 48%. These data confirm that strain SR4T is a new species of the genus Thermoanaerobacter.

DISCUSSION

Iron-containing compounds are abundant in some terrestrial, geothermally heated sediments in Kamchatka (Karpov, 1976). The fact that strain SR4T was isolated from a sample that was collected within 5 months of the formation of hydrothermal vents in the area of the eruption of Karymsky volcano indicates early colonization of high-temperature environments by micro-organisms capable of Fe(III) reduction.

Strain SR4T is a facultative Fe(III) reducer, capable of oxidizing organic substrates in the presence and absence of Fe(III). The mechanism of microbial Fe(III) reduction with complex organic substances, such as peptone, is unknown and may include fermentative as well as respiratory types of dissimilatory Fe(III) reduction. Greater cell numbers were obtained in media containing Fe(III), suggesting that Fe(III) reduction may play a role in energy conservation. Strain SR4T is also capable of molecular-hydrogen oxidation in the presence of Fe(III). Although the net consumption of H2 was relatively low, it was enough for sustainable growth and formation of a magnetic precipitate. The finding that strain SR4T can reduce Mn(IV) extends the upper temperature limit for biological manganese reduction to 76°C.

The anaerobic, thermophilic, endospore-forming bacteria that are unable to reduce sulfate are currently placed in the genera Clostridium, Thermoanaerobacter, Thermoanaerobacterium, Caloramator and Moorella (Collins et al., 1994; Lee et al., 1993; Wiegel, 1986). The results of 16S rDNA sequence analysis placed strain SR4T in the cluster composed of Thermoanaerobacter species.

The capacity for dissimilatory Fe(III) reduction has not been tested among the members of the genus Thermoanaerobacter. The involvement of Thermoanaerobacter species in Fe(III) reduction in the deep subsurface was suggested by Liu et al. (1997) on the basis of molecular analysis; however, pure cultures of the micro-organisms were not obtained. We tested two species of Thermoanaerobacter most closely related to strain SR4T on the basis of 16S rDNA identity, and found both Thermoanaerobacter wiegelii (Cook et al., 1996) and Thermoanaerobacter sulfurophilus (Bonch-Osmolovskaya et al., 1997) to be capable of dissimilatory Fe(III) reduction during growth with peptone as the electron donor and amorphous iron(III) oxide as the electron acceptor. However, the rate of Fe(III) reduction was considerably lower than that observed with strain SR4T. Thermoanaerobacter wiegelii and Thermoanaerobacter sulfurophilus did not reduce amorphous iron(III) oxide significantly with glycerol or lactate, respectively, as electron donors. These findings indicate that the capacity for dissimilatory Fe(III) reduction with complex organic substrates as electron donors may be widespread among the members of the genus Thermoanaerobacter. The stimulation of growth of strain SR4T by Fe(III) resembles the positive effect of thiosulfate or elemental sulfur on the growth of some Thermoanaerobacter species (Fardeau et al., 1994; Faudon et al., 1995; Bonch-Osmolovskaya et al., 1997) and probably has a similar mechanism.
Strain SR4T differs from Thermoanaerobacter wiegelli and Thermoanaerobacter sulfurophilus in the temperature and pH optima, capacity for reduction of elemental sulfur, G+C content of DNA and size of genome (Table 2). The fact that strain SR4T does not belong to any of the described Thermoanaerobacter species is also supported by the presence of a specific combination of long versions of helices in four regions of 16S rRNA. On the basis of physiological properties and phylogenetic analysis, we propose that strain SR4T should be assigned to a new species of the genus Thermoanaerobacter.

Description of Thermoanaerobacter siderophilus sp. nov.

Thermoanaerobacter siderophilus (si.de.ro'phil.us. Gr. n. sideros iron; Gr. adj. philos loving; M.L. adj. siderophilus iron-loving).

Cells are straight-to-curved rods, 0.4–0.6 μm in diameter and 3.5–9.0 μm in length, forming round, refractile, heat-resistant endospores in terminally swollen sporangia. Cells occur singly and exhibit slight tumbling motility due to peritrichous flagellation. Anaerobic. The temperature range for growth is 39–78 °C, with an optimum at 69–71 °C. Neutrophilic: pH range for growth is from 4–8 to 8.2, with an optimum at 6.3–6.5. Growth occurs in an NaCl concentration range of 0–3.5% (w/v). The substrates utilized in the presence, as well in the absence, of Fe(III) as an electron acceptor include peptone, yeast extract, beef extract, starch, glycerol, pyruvate, glucose, sucrose, fructose, maltose, xylose, cellobiose and sorbitol. Utilizes molecular hydrogen in the presence of Fe(II) and Mn(II) as an electron acceptor. The fermentation products from glucose are ethanol, lactate, H₂ and CO₂. Reduces amorphous iron(III) oxide, AQDS, sulfate, thiosulfate, elemental sulfur and MnO₂. The products of amorphous iron(III) oxide reduction are magnetite and siderite. Sulfite, thiosulfate and elemental sulfur are reduced to hydrogen sulfide. Does not reduce nitrate or sulfate and is incapable of growth with O₂. Growth is inhibited by chloramphenicol, neomycin, polymyxin B and kanamycin but not by penicillin, ampicillin, streptomycin or novobiocin. G+C content of DNA of the type strain is 32 mol%. The habitat is hydrothermal vents in the area of Karymsky volcano on the Kamchatka peninsula, Russia. The type strain is SR4T, which has been deposited with the Deutsche Sammlung von Mikroorganismen und Zellkulturen under the accession number DSM 12299T.

ACKNOWLEDGEMENTS

This work was supported in part by Genencor International and by grants 98-04-49079 and 96-04-50820 from the Russian Foundation for Basic Research. We thank G. A. Karpov for providing environmental samples and A. Lebedinsky for valuable discussion of the manuscript.

REFERENCES

A. I. Slobodkin and others

